Suppr超能文献

使用深度学习在CT定位器中检测左心耳。

Detecting the left atrial appendage in CT localizers using deep learning.

作者信息

Demircioğlu Aydin, Bos Denise, Quinsten Anton S, Umutlu Lale, Bruder Oliver, Forsting Michael, Nassenstein Kai

机构信息

Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.

Department of Cardiology and Angiology, Contilia Heart and Vascular Center, Elisabeth-Krankenhaus Essen, Klara-Kopp-Weg 1, 45138, Essen, Germany.

出版信息

Sci Rep. 2025 May 2;15(1):15333. doi: 10.1038/s41598-025-99701-6.

Abstract

Patients with cardioembolic stroke often undergo CT of the left atrial appendage (LAA), for example, to determine whether thrombi are present in the LAA. To guide the imaging process, technologists first perform a localizer scan, which is a preliminary image used to identify the region of interest. However, the lack of well-defined landmarks makes accurate delimitation of the LAA in localizers difficult and often requires whole-heart scans, increasing radiation exposure and cancer risk. This study aims to automate LAA delimitation in CT localizers using deep learning. Four commonly used deep networks (VariFocalNet, Cascade-R-CNN, Task-aligned One-stage Object Detection Network, YOLO v11) were trained to predict the LAA boundaries on a cohort of 1253 localizers, collected retrospectively from a single center. The best-performing network in terms of delimitation accuracy was then evaluated on an internal test cohort of 368 patients, and on an external test cohort of 309 patients. The VariFocalNet performed best, achieving LAA delimitations with high accuracy (97.8% and 96.8%; Dice coefficients: 90.4% and 90.0%) and near-perfect clinical utility (99.8% and 99.3%). Compared to whole-heart scanning, the network-based delimitation reduced the radiation exposure by more than 50% (5.33 ± 6.42 mSv vs. 11.35 ± 8.17 mSv in the internal cohort, 4.39 ± 4.23 mSv vs. 10.09 ± 8.0 mSv in the external cohort). This study demonstrates that a deep learning network can accurately delimit the LAA in the localizer, leading to more accurate CT scans of the LAA, thereby significantly reducing radiation exposure to the patient compared to whole-heart scanning.

摘要

例如,患有心源性栓塞性中风的患者通常会接受左心耳(LAA)的CT检查,以确定LAA中是否存在血栓。为了指导成像过程,技术人员首先进行定位扫描,这是一种用于识别感兴趣区域的初步图像。然而,由于缺乏明确的标志物,在定位器中准确划定LAA很困难,通常需要进行全心扫描,这会增加辐射暴露和癌症风险。本研究旨在利用深度学习自动划定CT定位器中的LAA。对四个常用的深度网络(可变焦距网络、级联R-CNN、任务对齐单阶段目标检测网络、YOLO v11)进行训练,以预测从单个中心回顾性收集的1253个定位器队列中的LAA边界。然后在368例患者的内部测试队列和309例患者的外部测试队列中评估在划定准确性方面表现最佳的网络。可变焦距网络表现最佳,实现了高精度的LAA划定(分别为97.8%和96.8%;Dice系数:90.4%和90.0%)以及近乎完美的临床实用性(分别为99.8%和99.3%)。与全心扫描相比,基于网络的划定使辐射暴露减少了50%以上(内部队列中为5.33±6.42 mSv对11.35±8.17 mSv,外部队列中为4.39±4.23 mSv对10.09±8.0 mSv)。本研究表明,深度学习网络可以在定位器中准确划定LAA,从而实现更准确的LAA CT扫描,与全心扫描相比,可显著减少患者的辐射暴露。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c90/12048584/22f6cf605ce2/41598_2025_99701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验