Suppr超能文献

用于关节扭矩监测的人工智能驱动的压电可穿戴设备。

AI-Enabled Piezoelectric Wearable for Joint Torque Monitoring.

作者信息

Chang Jinke, Li Jinchen, Ye Jiahao, Zhang Bowen, Chen Jianan, Xia Yunjia, Lei Jingyu, Carlson Tom, Loureiro Rui, Korsunsky Alexander M, Tan Jin-Chong, Zhao Hubin

机构信息

Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.

HUB of Intelligent Neuro-Engineering (HUBIN), Aspire CREATe, DSIS, University College London, London, HA7 4LP, UK.

出版信息

Nanomicro Lett. 2025 May 3;17(1):247. doi: 10.1007/s40820-025-01753-w.

Abstract

Joint health is critical for musculoskeletal (MSK) conditions that are affecting approximately one-third of the global population. Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention. However, there is no technology that can provide the precision, effectiveness, low-resource setting, and long-term wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments. Herein, we propose a piezoelectric boron nitride nanotubes (BNNTs)-based, AI-enabled wearable device for regular monitoring of joint torque. We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics. A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion, while concurrently realizing self-sufficient energy harvesting. With the help of a lightweight on-device artificial neural network, the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics, including torque, angle, and loading. A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation. This work offers a relatively low-cost wearable solution for effective, regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels, potentially producing wide-reaching global implications for joint health, MSK conditions, ageing, rehabilitation, personal health, and beyond.

摘要

关节健康对于影响全球约三分之一人口的肌肉骨骼(MSK)疾病至关重要。监测关节扭矩可为评估关节健康和指导干预提供重要途径。然而,目前尚无技术能够同时具备高精度、有效性、低资源需求以及长期可穿戴性,以在更广泛的环境中实现快速且准确的关节扭矩测量,从而进行关节损伤风险评估和关节康复的长期监测。在此,我们提出一种基于压电氮化硼纳米管(BNNTs)且具备人工智能功能的可穿戴设备,用于定期监测关节扭矩。我们首先采用迭代逆向设计来制造泊松比与膝关节生物力学精确匹配的可穿戴材料。基于BNNTs和聚二甲基硅氧烷构建了一种高灵敏度的压电薄膜,用于精确捕捉膝关节运动,同时实现自供电能量采集。借助轻量级的设备上人工神经网络,所提出的可穿戴设备能够从复杂的压电输出中准确提取目标信号,然后有效地将这些信号映射到其相应的物理特征,包括扭矩、角度和负载。构建了一个实时平台来展示精细实时扭矩估计的能力。这项工作提供了一种成本相对较低的可穿戴解决方案,用于有效、定期地监测关节扭矩,不同发展水平的国家和地区的不同人群都可使用,这可能对关节健康、MSK疾病、老龄化、康复、个人健康等产生广泛的全球影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08cc/12048387/6444be956f94/40820_2025_1753_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验