Li Pei, Lang Shipan, Xie Lei, Zhang Yong, Gou Xin, Zhang Chao, Dong Chenhui, Li Chunbao, Yang Jun
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China.
Department of Orthopedics, the Fourth medical center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China.
Nanomicro Lett. 2025 Sep 1;18(1):55. doi: 10.1007/s40820-025-01887-x.
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision. While flexible pressure-sensing insoles show clinical potential, their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity (R > 0.99 up to 1 MPa) in conventional designs. Inspired by the tactile sensing mechanism of human skin, where dermal stratification enables wide-range pressure adaptation and ion-channel-regulated signaling maintains linear electrical responses, we developed a dual-mechanism flexible iontronic pressure sensor (FIPS). This innovative design synergistically combines two bioinspired components: interdigitated fabric microstructures enabling pressure-proportional contact area expansion (∝ P) and iontronic film facilitating self-adaptive ion concentration modulation (∝ P), which together generate a linear capacitance-pressure response (C ∝ P). The FIPS achieves breakthrough performance: 242 kPa sensitivity with 0.997 linearity across 0-1 MPa, yielding a record linear sensing factor (LSF = 242,000). The design is validated across various substrates and ionic materials, demonstrating its versatility. Finally, the FIPS-driven design enables a smart insole demonstrating 1.8% error in tibial load assessment during gait analysis, outperforming nonlinear counterparts (6.5% error) in early fracture-risk prediction. The biomimetic design framework establishes a universal approach for developing high-performance linear sensors, establishing generalized principles for medical-grade wearable devices.
运动引起的胫骨应力性骨折日益普遍,这就需要能够以医学级精度监测动态肌肉骨骼负荷的可穿戴传感器。虽然柔性压力传感鞋垫显示出临床应用潜力,但传统设计中高灵敏度和全范围线性度(在1兆帕以下R>0.99)之间的内在权衡阻碍了它们的发展。受人类皮肤触觉传感机制的启发,其中皮肤分层实现了宽范围的压力适应,离子通道调节的信号传导维持线性电响应,我们开发了一种双机制柔性离子电子压力传感器(FIPS)。这种创新设计协同结合了两个受生物启发的组件:叉指状织物微结构实现压力成比例的接触面积扩展(∝P)和离子电子薄膜促进自适应离子浓度调制(∝P),它们共同产生线性电容-压力响应(C∝P)。FIPS实现了突破性性能:在0-1兆帕范围内灵敏度为242千帕,线性度为0.997,产生了创纪录的线性传感因子(LSF=242,000)。该设计在各种基板和离子材料上得到验证,证明了其通用性。最后,由FIPS驱动的设计实现了一种智能鞋垫,在步态分析期间胫骨负荷评估中的误差为1.8%,在早期骨折风险预测方面优于非线性同类产品(误差为6.5%)。这种仿生设计框架建立了一种开发高性能线性传感器的通用方法,为医学级可穿戴设备确立了通用原则。