文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

刺蒺藜介导的银纳米粒子绿色合成:其植物化学、抗氧化、毒性和抗菌活性的表征与评估

Withania coagulans-mediated green synthesis of silver nanoparticles: characterization and assessment of their phytochemical, antioxidant, toxicity, and antimicrobial activities.

作者信息

Khan Amjid, Younis Tahira, Anas Muhammad, Ali Muhammad, Shinwari Zabta Khan, Khalil Ali Talha, Munawar Khurram Shahzad, Mohamed Hamza Elsayed Ahmed, Hkiri Khaoula, Maaza Malik, Seleiman Mahmoud F, Khan Naeem

机构信息

Department of Plant Sciences, Faculty of Biological Sciences, Quaid -i- Azam University, Islamabad, 45320, Pakistan.

Department of Botany, University of Mianwali, Mianwali, Punjab, 42200, Pakistan.

出版信息

BMC Plant Biol. 2025 May 2;25(1):574. doi: 10.1186/s12870-025-06533-7.


DOI:10.1186/s12870-025-06533-7
PMID:40316892
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12048944/
Abstract

BACKGROUND: In this study, we report the biofabrication of silver nanoparticles (Ag-NPs) using aqueous leaf extracts of Withania coagulans, which act as both reducing and capping agents. The goal was to synthesize and characterize the silver nanoparticles and evaluate their biological properties. RESULTS: The silver nanoparticles were characterized by multiple techniques including UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), zeta potential, dynamic light scattering (DLS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). A surface plasmon resonance peak was observed at 420 nm, and the XRD pattern indicated highly crystalline Ag-NPs with a crystallite size of 39.76 nm. SEM and HRTEM revealed irregular morphology with an average particle diameter of 26.63 nm. Zeta potential of -21.4 mV indicated relatively stable nanoparticles. FTIR spectra displayed significant peaks at 3269, 2921, 1628, 1513, and 1385 cm⁻. Thermal stability was confirmed via TGA and DSC. Bioassays including total phenolics, total flavonoids, ferric reducing antioxidant power, and DPPH assays showed higher antioxidant potential in Ag-NPs compared to extracts, though phenolic and flavonoid content was lower. Biocompatibility tests such as hemolysis (IC₅₀ = 141.466 μg/mL) and brine shrimp lethality assay (IC₅₀ = 721.76 μg/mL) indicated moderate cytotoxicity. Phytotoxicity assays revealed higher toxicity of Ag-NPs against radish compared to control. Significant antibacterial activity was observed against Klebsiella pneumoniae and Salmonella typhi (29 ± 0.01 mm and 28 ± 1.00 mm inhibition zones at 25 μg/mL, respectively). CONCLUSIONS: The Withania coagulans leaf-extract-mediated silver nanoparticles exhibit remarkable antioxidant, phytochemical, and antimicrobial properties, suggesting potential for commercial applications in various biomedical and agricultural fields.

摘要

背景:在本研究中,我们报道了利用凝结茄叶水提取物生物制造银纳米颗粒(Ag-NPs),该提取物同时充当还原剂和封端剂。目标是合成并表征银纳米颗粒,并评估其生物学特性。 结果:通过多种技术对银纳米颗粒进行了表征,包括紫外可见光谱、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱、扫描电子显微镜(SEM)、能量色散光谱(EDS)、高分辨率透射电子显微镜(HRTEM)、zeta电位、动态光散射(DLS)、热重分析(TGA)和差示扫描量热法(DSC)。在420nm处观察到表面等离子体共振峰,XRD图谱表明Ag-NPs具有高度结晶性,微晶尺寸为39.76nm。SEM和HRTEM显示形态不规则,平均粒径为26.63nm。-21.4mV的zeta电位表明纳米颗粒相对稳定。FTIR光谱在3269、2921、1628、1513和1385cm⁻处显示出明显的峰。通过TGA和DSC确认了热稳定性。包括总酚、总黄酮、铁还原抗氧化能力和DPPH测定在内的生物测定表明,与提取物相比,Ag-NPs具有更高的抗氧化潜力,尽管酚类和黄酮类含量较低。溶血(IC₅₀ = 141.466μg/mL)和卤虫致死试验(IC₅₀ = 721.76μg/mL)等生物相容性测试表明具有中等细胞毒性。植物毒性试验表明,与对照相比,Ag-NPs对萝卜的毒性更高。观察到对肺炎克雷伯菌和伤寒沙门氏菌具有显著的抗菌活性(在25μg/mL时,抑菌圈分别为29±0.01mm和28±1.00mm)。 结论:凝结茄叶提取物介导的银纳米颗粒具有显著的抗氧化、植物化学和抗菌特性,表明在各种生物医学和农业领域具有商业应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/64810e41304d/12870_2025_6533_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/59f8a3a2a3c2/12870_2025_6533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/b044f2bc9f61/12870_2025_6533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/e27474b1a964/12870_2025_6533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/e063195eb9b2/12870_2025_6533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/75188766ce02/12870_2025_6533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/10ca30caee1e/12870_2025_6533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/939e41597ae9/12870_2025_6533_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/83c557161f66/12870_2025_6533_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/ebfd96af77b7/12870_2025_6533_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/821566cbbf65/12870_2025_6533_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/53b182519b43/12870_2025_6533_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/44751d69c496/12870_2025_6533_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/64810e41304d/12870_2025_6533_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/59f8a3a2a3c2/12870_2025_6533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/b044f2bc9f61/12870_2025_6533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/e27474b1a964/12870_2025_6533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/e063195eb9b2/12870_2025_6533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/75188766ce02/12870_2025_6533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/10ca30caee1e/12870_2025_6533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/939e41597ae9/12870_2025_6533_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/83c557161f66/12870_2025_6533_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/ebfd96af77b7/12870_2025_6533_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/821566cbbf65/12870_2025_6533_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/53b182519b43/12870_2025_6533_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/44751d69c496/12870_2025_6533_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3f/12048944/64810e41304d/12870_2025_6533_Fig13_HTML.jpg

相似文献

[1]
Withania coagulans-mediated green synthesis of silver nanoparticles: characterization and assessment of their phytochemical, antioxidant, toxicity, and antimicrobial activities.

BMC Plant Biol. 2025-5-2

[2]
Antimicrobial efficiency against fish pathogens on the green synthesized silver nanoparticles.

Microb Pathog. 2024-8

[3]
Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties.

Mater Sci Eng C Mater Biol Appl. 2019-3-1

[4]
Preparation of silver nanoparticles by Osbeckia stellata aqueous extract via green synthesis approach: Characterization and assessment of their antioxidant, antidiabetic, cytotoxicity, and antibacterial properties.

Biotechnol Appl Biochem. 2023-12

[5]
Identification and characterization of silver nanoparticles from Erythrina indica and its antioxidant and Uropathogenic antimicrobial properties.

Microb Pathog. 2024-5

[6]
Plant-assisted green preparation of silver nanoparticles using leaf extract of Dalbergia sissoo and their antioxidant, antibacterial and catalytic applications.

Bioprocess Biosyst Eng. 2024-8

[7]
Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of : Characterization and Antibacterial Potential.

Molecules. 2019-11-30

[8]
Characterization, anti-microbial, anti-oxidant and growth promoting effects of biogenically synthesized silver nanoparticles derived from Dicliptera bupleuroides Nees.

Microsc Res Tech. 2024-11

[9]
Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

Mater Sci Eng C Mater Biol Appl. 2018-2-16

[10]
Green Synthesis of Silver Nanoparticles Using Natural Extracts with Proven Antioxidant Activity.

Molecules. 2021-8-17

引用本文的文献

[1]
Synthesis of Silver Nanoparticles from Bitter Melon () Extracts and Their Antibacterial Effect.

Microorganisms. 2025-8-2

[2]
Nanotechnology-Based Plant Antioxidants: A Current Literature Review on Bioavailability and Oxidative Stress.

Curr Nutr Rep. 2025-8-6

本文引用的文献

[1]
Green Synthesis and Characterization of Biologically Synthesized and Antibiotic-Conjugated Silver Nanoparticles followed by Post-Synthesis Assessment for Antibacterial and Antioxidant Applications.

ACS Omega. 2024-4-15

[2]
Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells.

Sci Rep. 2024-2-19

[3]
Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities.

Int J Biol Macromol. 2024-1

[4]
Synthesis of Green Copper Nanoparticles Using Medicinal Plant sp. Root Extract and Its Applications.

Molecules. 2023-6-8

[5]
Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection.

Appl Biochem Biotechnol. 2024-1

[6]
Assessment of the dual role of (Wall.) Drude in inhibiting AGEs and enhancing GLUT4 translocation through LC-ESI-QTOF-MS/MS determination and studies.

Front Pharmacol. 2023-3-27

[7]
In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/TiCT for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids.

Chemosphere. 2023-5

[8]
Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin.

Sci Rep. 2023-2-8

[9]
Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities.

Nanomaterials (Basel). 2022-12-25

[10]
In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes.

Sci Rep. 2022-12-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索