Nagylaki T
J Math Biol. 1985;21(3):215-35. doi: 10.1007/BF00276223.
A model for the evolution of a family of tandemly repeated genes in a single chromosome lineage under intrachromosomal gene conversion [43] is analyzed further and extended. Direct and diffusion approximations are derived for the exact fixation probabilities, mean time to fixation or loss, and mean conditional fixation time of Nagylaki and Petes [43]. The distribution of the number of variant repeats under the joint action of gene conversion and reversible mutation is investigated; exact and approximate expressions are derived for the stationary distribution. It is shown that conversional bias greatly increases the amount of sequence homogeneity at equilibrium. The diffusion processes studied here also apply to selection and mutation in a finite population, and some new results are established for that classical problem.
对一个关于在染色体内部基因转换情况下单条染色体谱系中串联重复基因家族进化的模型[43]进行了进一步分析和扩展。推导了关于Nagylaki和Petes[43]所提出的确切固定概率、固定或丢失的平均时间以及平均条件固定时间的直接近似和扩散近似。研究了在基因转换和可逆突变共同作用下变异重复数目的分布;推导了平稳分布的确切表达式和近似表达式。结果表明,转换偏向在平衡状态下极大地增加了序列同质性的程度。这里所研究的扩散过程也适用于有限群体中的选择和突变,并针对该经典问题得出了一些新的结果。