Suppr超能文献

街舞动作中节拍对齐的运动协同与运动节拍检测

Beat-aligned motor synergies and kinematic beat detection in street dance movements.

作者信息

Shen Keli, Hirayama Jun-Ichiro

机构信息

Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Ibaraki, Japan.

出版信息

J Neuroeng Rehabil. 2025 May 2;22(1):102. doi: 10.1186/s12984-025-01626-8.

Abstract

Dance is a rich artistic expression that combines intricate human movements with music, emotion, and cultural elements. However, the analysis of complex dance movements poses significant challenges because of the lack of comprehensive motion capture data and efficient computational techniques for feature extraction. In the current study, we present a novel time-dependent principal component analysis approach for extracting beat-aligned motor synergies from large street dance datasets. Unlike existing methods, our technique accounts for the temporal variability induced by music beats, enabling an accurate representation of dance motion patterns. The extracted motor synergies, capturing both spatial and temporal patterns across motion segments and beat durations, were analyzed to gain insights into motor coordination, consistency, similarity, and variability across different dance genres. This analysis facilitates the understanding of complex dance movements by summarizing them in a low-dimensional subspace, elucidating the common elements and coordinated modalities among various dance sequences segmented based on the timing of music beats. Furthermore, we demonstrated that kinematic beat detection was improved by leveraging the first motor synergy activation, enabling more accurate beat alignment and synchronization with the music, a crucial factor in dance performance and analysis. The enhancement of beat estimation accuracy was verified through cross-validation comparisons of beat alignment scores. This work offers a novel computational approach to analyzing and extracting meaningful patterns from complex dance motions for a deeper understanding of the motor mechanisms inherent in dance genres, enabling new insights into the intricate dynamics of dance movements and their relationships with music influences.

摘要

舞蹈是一种丰富的艺术表达形式,它将复杂的人体动作与音乐、情感和文化元素相结合。然而,由于缺乏全面的动作捕捉数据和高效的特征提取计算技术,对复杂舞蹈动作的分析面临重大挑战。在当前的研究中,我们提出了一种新颖的随时间变化的主成分分析方法,用于从大型街舞数据集中提取与节拍对齐的运动协同效应。与现有方法不同,我们的技术考虑了音乐节拍引起的时间变化,能够准确地表示舞蹈动作模式。对提取的运动协同效应进行分析,这些协同效应捕捉了跨运动片段和节拍持续时间的空间和时间模式,以深入了解不同舞蹈类型之间的运动协调、一致性、相似性和变异性。这种分析通过在低维子空间中总结复杂舞蹈动作,促进了对它们的理解,阐明了基于音乐节拍时间分割的各种舞蹈序列之间的共同元素和协调方式。此外,我们证明了通过利用第一个运动协同效应激活可以提高运动节拍检测,从而实现更准确的节拍对齐和与音乐的同步,这是舞蹈表演和分析中的一个关键因素。通过节拍对齐分数的交叉验证比较验证了节拍估计准确性的提高。这项工作提供了一种新颖的计算方法,用于分析和从复杂舞蹈动作中提取有意义的模式,以更深入地理解舞蹈类型中固有的运动机制,从而对舞蹈动作的复杂动态及其与音乐影响的关系有新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b8/12046673/06fcaa822851/12984_2025_1626_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验