Koam Ali N A, Majeed Muhammad Usamah, Zaman Shahid, Ahmad Ali, Masmali Ibtisam, Ahmadini Abdullah Ali H
Department of Mathematics, College of Science, Jazan University, P.O. Box: 114, 45142, Jazan, Kingdom of Saudi Arabia.
Department of Mathematics, University of Sialkot, Sialkot, 51310, Pakistan.
Eur Phys J E Soft Matter. 2025 May 3;48(4-5):21. doi: 10.1140/epje/s10189-025-00487-2.
Supervised machine learning methods like random forests and extreme gradient boosting plays an important role in drug development for predicting bioactivity and resolving structure-activity correlations. These approaches use topological descriptors in the study of polycyclic aromatic hydrocarbons that represent molecular structural characteristics to enhance the prediction capacity of quantitative structure-property relationships (QSPR). The objective is to identify the physoichemical properties such as density, boiling point, flash point, enthalpy, polarizability, surface tension, molar volume, molecular weight and complexity that significantly impact physicochemical attributes. The combination of machine learning and QSPR also demonstrates the potential of computational techniques in drug development. Then effective algorithms are constructed to express the link between the eccentricity-based topological indices and the physicochemical characteristics of each of the polycyclic aromatic hydrocarbons, which grows our understanding of their behavior and paves the way for future development of environmental forecasting techniques and toxicological evaluations of polycyclic aromatic hydrocarbons.
随机森林和极端梯度提升等监督式机器学习方法在药物开发中对于预测生物活性和解析构效关系起着重要作用。这些方法在多环芳烃研究中使用代表分子结构特征的拓扑描述符,以增强定量结构-性质关系(QSPR)的预测能力。目的是识别诸如密度、沸点、闪点、焓、极化率、表面张力、摩尔体积、分子量和复杂度等对物理化学属性有显著影响的物理化学性质。机器学习和QSPR的结合也展示了计算技术在药物开发中的潜力。然后构建有效的算法来表达基于偏心率的拓扑指数与每种多环芳烃物理化学特征之间的联系,这加深了我们对它们行为的理解,并为环境预测技术的未来发展和多环芳烃的毒理学评估铺平了道路。