Alkofer Moritz, Yang Chaoqi, Ganglberger Wolfgang, Beal Jules, Hegde Manu, Kang Joon-Yi, Yoo Ji Yeoun, Gelfand Michael A, Thio Liu Lin, Kutluay Ekrem, Campbell Zeke, Schmitt Sarah, Gleichgerrcht Ezequiel, Waterhouse Elizabeth, Lopez Maria R, Eisenschenk Stephan, Galanti Mattia, Singh Rani K, Wills Kristin E, Meulenbrugge Erik-Jan, Dlugos Dennis, Dean Brian, Halford Jonathan J, Goldenholz Daniel, Jing Jin, Thomas Robert, Westover M Brandon
Neurology Department, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
Institute for Theoretical Physics, Technische Universität Berlin, Berlin, Germany.
Epilepsia. 2025 May 3;66(7):e114-20. doi: 10.1111/epi.18431.
Interictal epileptiform discharges (IEDs) are crucial for epilepsy diagnosis and management. New electroencephalographic (EEG) devices with fewer electrodes are more accessible, but their ability to detect IEDs is uncertain. The aim of this study is to determine whether IEDs can be reliably detected in reduced-channel EEG data, enabling broader epilepsy diagnosis. Using EEG samples from 3378 patients and an external validation set of 51 patients, we trained Cyclops, a deep neural network designed to function across various channel configurations. Performance was evaluated using area under the receiver operating characteristic curve (AUROC) and other clinically relevant metrics, including IED source location sensitivity. Cyclops demonstrated strong performance even with minimal channels. AUROC for one channel was .876 (95% confidence interval [CI] = .854-.897); best configuration based on a clinically available product was .950 (95% CI = .936-.962); for the detection of focal IEDs with two local channels, AUROC values ranged from .701 (95% CI = .656-.745) to .930 (95% CI = .902-.955), with a median AUROC of .809. On the external validation set, performance ranged from .692 (95% CI = .593-.782) to .949 (95% CI = .922-.972), with a median AUROC of .846. Thus, Cyclops demonstrates that effective IED detection is possible with reduced EEG setups, enhancing accessibility and expanding epilepsy diagnosis to broader patient populations.
发作间期癫痫样放电(IEDs)对癫痫的诊断和管理至关重要。电极数量较少的新型脑电图(EEG)设备更容易获取,但其检测IEDs的能力尚不确定。本研究的目的是确定能否在减少通道的EEG数据中可靠地检测到IEDs,从而实现更广泛的癫痫诊断。我们使用来自3378名患者的EEG样本和51名患者的外部验证集,训练了Cyclops,这是一个旨在跨各种通道配置运行的深度神经网络。使用受试者操作特征曲线下面积(AUROC)和其他临床相关指标(包括IED源定位敏感性)评估性能。即使通道最少,Cyclops也表现出强大的性能。单通道的AUROC为0.876(95%置信区间[CI]=0.854-0.897);基于临床可用产品的最佳配置为0.950(95%CI=0.936-0.962);对于使用两个局部通道检测局灶性IEDs,AUROC值范围为0.701(95%CI=0.656-0.745)至0.930(95%CI=0.902-0.955),中位数AUROC为0.809。在外部验证集上,性能范围为0.692(95%CI=0.593-0.782)至0.949(95%CI=0.922-0.972),中位数AUROC为0.846。因此,Cyclops表明,通过减少EEG设置可以有效地检测IEDs,提高可及性,并将癫痫诊断扩展到更广泛的患者群体。