Liu Wangxi, Jiang Jingwen, Li Zhonghua, Gao Bin, Liu Changhao, Liu Chen, Hao Weichang, Fan Rongli, Liu Jianming, Yu Tao, Zou Zhigang, Li Zhaosheng
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, P.R. China.
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202507312. doi: 10.1002/anie.202507312. Epub 2025 May 9.
Photocatalytic acceptorless dehydrogenation of alcohols offers a promising strategy to produce the corresponding carbonyl compounds and clean fuel H. However, the sluggish kinetics of the alkoxy C─H bond cleavage attributes to the inefficient utilization of photogenerated holes greatly restricts the photocatalytic activity. Here we develmically dispersed low-coordination Mo on ultrathin ZnInS nanosheets that can greatly accelerate photocatalytic C─H activation. An internal quantum efficiency of 45.2% at 400 nm together with 99% benzaldehyde (BAD) selectivity is achieved using benzyl alcohol (BA) as a model substrate. Extensive experimental characterizations and theoretical calculations reveal that the low-coordination Mo tunes the local atomic configuration of highest occupied molecular orbital to trap holes produced under photoexcitation within picoseconds. Moreover, the incorporated site-specific Mo greatly improves the lifetime and diffusion length of photogenerated holes and optimizes the driving force of alkoxy C─H activation, which are responsible for the excellent performance. This work marks a significant stride to enhance the utilization efficiency of holes for promoting photocatalytic C─H activation.
光催化醇无受体脱氢反应为制备相应的羰基化合物和清洁燃料氢气提供了一种很有前景的策略。然而,烷氧基碳氢键裂解动力学缓慢,这归因于光生空穴利用效率低下,极大地限制了光催化活性。在此,我们在超薄ZnInS纳米片上开发了化学分散的低配位钼,其能够极大地加速光催化碳氢键活化。以苯甲醇(BA)为模型底物,在400 nm处实现了45.2%的内量子效率以及99%的苯甲醛(BAD)选择性。广泛的实验表征和理论计算表明,低配位钼调节了最高占据分子轨道的局部原子构型,从而在皮秒内捕获光激发产生的空穴。此外,引入的位点特异性钼极大地提高了光生空穴的寿命和扩散长度,并优化了烷氧基碳氢键活化的驱动力,这些因素共同造就了优异的性能。这项工作标志着在提高空穴利用效率以促进光催化碳氢键活化方面迈出了重要一步。