Liu Dong Dong, Ngang Shaun Wei Yang, Cheow Lih Feng
Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore.
School of Medicine, Shanghai University, Shanghai, 200444, China.
Small. 2025 May 2:e2412225. doi: 10.1002/smll.202412225.
DNA data storage offers a highly compact and efficient alternative to traditional data storage methods. However, DNA writing remains time-consuming and relies on specialized infrastructure. Here, a novel, high-throughput, in situ DNA writing strategy is introduced using microfluidic very-large-scale integration (VLSI) chips inspired by dynamic random-access memory (DRAM) architecture. This method enables rapid encoding of binary data into DNA via overlap-extension PCR (OE-PCR) and programmable microfluidic partitioning. Using a widely accessible integrated microfluidic circuit, 2304 bits of data within 4 h encoded, demonstrating scalable, parallelized DNA writing on a benchtop instrument. Next-generation sequencing confirmed high-fidelity encoding with excellent signal-to-noise ratios. Furthermore, DNA data can be quickly decoded using a microfluidic VLSI qPCR platform, reducing the write-to-read latency to under 8 h. This proof-of-concept highlights the potential of programmable microfluidic VLSI platforms for efficient, rapid, and portable DNA writing and decoding, paving the way for scalable, high-throughput, decentralized DNA data storage and gene synthesis.
DNA数据存储为传统数据存储方法提供了一种高度紧凑且高效的替代方案。然而,DNA写入仍然耗时且依赖于专门的基础设施。在此,引入了一种新颖的、高通量的原位DNA写入策略,该策略使用受动态随机存取存储器(DRAM)架构启发的微流体超大规模集成(VLSI)芯片。这种方法能够通过重叠延伸PCR(OE-PCR)和可编程微流体分区将二进制数据快速编码到DNA中。使用一种广泛可用的集成微流体电路,在4小时内编码了2304位数据,证明了在台式仪器上可扩展的、并行化的DNA写入。下一代测序证实了具有优异信噪比的高保真编码。此外,DNA数据可以使用微流体VLSI qPCR平台快速解码,将写入到读取的延迟缩短至8小时以内。这一概念验证突出了可编程微流体VLSI平台在高效、快速和便携式DNA写入与解码方面的潜力,为可扩展的、高通量的、分散式DNA数据存储和基因合成铺平了道路。