Wang Jingnan, Jiao Boxin, Tian Ruijia, Sun Kexuan, Meng Yuanyuan, Bai Yang, Lu Xiaoyi, Han Bin, Yang Ming, Wang Yaohua, Zhou Shujing, Pan Haibin, Song Zhenhuan, Xiao Chuanxiao, Liu Chang, Ge Ziyi
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
School of Materials Science and Chemical Engineering Ningbo University, Ningbo, 315211, China.
Nat Commun. 2025 May 4;16(1):4148. doi: 10.1038/s41467-025-59515-6.
The interfacial contact between NiO and self-assembled monolayers (SAMs) in wide-bandgap (WBG) subcells limits the efficiency and stability of all-perovskite tandem solar cells (TSCs). The strongly acidic phosphoric acid (PA) anchors in common PA-SAMs corrode reactive NiO, undermining device stability. Moreover, SAM aggregation leads to interfacial losses and significant open-circuit voltage (V) deficits. Here, we introduce boric acid (BA) as a milder anchoring group that chemisorbs onto NiO via strong - -Ni coordination. A benzothiophene-fused head group enhances interfacial bonding through S-Ni orbital interactions, yielding higher binding energy than PA-SAMs. This design also promotes homogeneous SAM formation without aggregation. Resultantly, the WBG cell exhibits an improved PCE to 20.1%. When integrated with narrow bandgap (NBG) subcell, the two-terminal (2T) TSCs achieve an ameliorative PCE of 28.5% and maintain 90% of the initial PCE after maximum power point tracking (MPP) under 1 sun illumination for 500 h.
宽带隙(WBG)子电池中氧化镍(NiO)与自组装单分子层(SAMs)之间的界面接触限制了全钙钛矿串联太阳能电池(TSCs)的效率和稳定性。常见的磷酸(PA)自组装单分子层中的强酸性磷酸锚会腐蚀活性氧化镍,破坏器件稳定性。此外,自组装单分子层聚集会导致界面损失和显著的开路电压(V)损失。在此,我们引入硼酸(BA)作为一种较温和的锚定基团,它通过强的 - -Ni配位化学吸附到氧化镍上。一个苯并噻吩稠合的头基通过S-Ni轨道相互作用增强界面键合,产生比磷酸自组装单分子层高的结合能。这种设计还能促进均匀的自组装单分子层形成而不聚集。结果,宽带隙电池的功率转换效率(PCE)提高到了20.1%。当与窄带隙(NBG)子电池集成时,两端(2T)串联太阳能电池的功率转换效率提高到了28.5%,并且在1个太阳光照下进行500小时最大功率点跟踪(MPP)后,仍保持初始功率转换效率的90%。