Suppr超能文献

使用定制的二维钙钛矿实现全钙钛矿串联器件的均匀接触

Homogenized contact in all-perovskite tandems using tailored 2D perovskite.

机构信息

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.

State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, Key Laboratory of Material Simulation Methods & Software of MOE, School of Materials Science and Engineering, Jilin University, Changchun, China.

出版信息

Nature. 2024 Nov;635(8040):867-873. doi: 10.1038/s41586-024-08158-6. Epub 2024 Oct 14.

Abstract

The fabrication of scalable all-perovskite tandem solar cells is considered an attractive route to commercialize perovskite photovoltaic modules. However, the certified efficiency of 1-cm-scale all-perovskite tandem solar cells lags behind their small-area (approximately 0.05-cm) counterparts. This performance deficit originates from inhomogeneity in wide-bandgap (WBG) perovskite solar cells (PSCs) at a large scale. The inhomogeneity is known to be introduced at the bottom interface and within the perovskite bulk itself. Here we uncover another crucial source for the inhomogeneity-the top interface formed during the deposition of the electron transport layer (ETL; C). Meanwhile, the poor ETL interface is also a notable limitation of device performance. We address this issue by introducing a mixture of 4-fluorophenethylamine (F-PEA) and 4-trifluoromethyl-phenylammonium (CF3-PA) to create a tailored 2D perovskite layer (TTDL), in which F-PEA forms a 2D perovskite at the surface, reducing contact losses and inhomogeneity, and CF3-PA enhances charge extraction and transport. As a result, we demonstrate a high open-circuit voltage (V) of 1.35 V and an efficiency of 20.5% in 1.77-eV WBG PSCs at a square-centimetre scale. By stacking with a narrow-bandgap (NBG) perovskite subcell, we report 1.05-cm all-perovskite tandem cells delivering 28.5% (certified 28.2%) efficiency, the highest reported so far. Our work showcases the importance of treating the top perovskite/ETL contact for upscaling PSCs.

摘要

制造可扩展的全钙钛矿串联太阳能电池被认为是使钙钛矿光伏模块商业化的有吸引力的途径。然而,1 厘米尺度的全钙钛矿串联太阳能电池的认证效率落后于其小面积(约 0.05 厘米)的对应物。这种性能缺陷源于大面积宽带隙(WBG)钙钛矿太阳能电池(PSC)的不均匀性。众所周知,这种不均匀性是在底部界面和钙钛矿体本身内部引入的。在这里,我们揭示了不均匀性的另一个关键来源-在电子传输层(ETL;C)沉积过程中形成的顶部界面。同时,较差的 ETL 界面也是器件性能的一个显著限制。我们通过引入 4-氟苯乙胺(F-PEA)和 4-三氟甲基苯甲脒(CF3-PA)的混合物来解决这个问题,以创建一个定制的二维钙钛矿层(TTDL),其中 F-PEA 在表面形成二维钙钛矿,减少接触损耗和不均匀性,而 CF3-PA 则增强电荷提取和传输。结果,我们在 1.77eV 的 WBG PSCs 中展示了 1.35V 的高开路电压(V)和 20.5%的效率,在一平方厘米的规模上。通过与窄带隙(NBG)钙钛矿子电池堆叠,我们报告了 1.05 厘米全钙钛矿串联电池的 28.5%(认证 28.2%)效率,这是迄今为止报道的最高效率。我们的工作展示了处理顶部钙钛矿/ETL 接触以实现 PSC 规模化的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验