Suppr超能文献

多组学整合为健康个体的早期预防策略指明了方向。

Multi-omic integration sets the path for early prevention strategies on healthy individuals.

作者信息

Kioroglou Dimitrios, Gil-Redondo Rubén, Embade Nieves, Bizkarguenaga Maider, Conde Ricardo, Millet Oscar, Mato José M, Marigorta Urko M

机构信息

Integrative Genomics Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Basque Country, Spain.

Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Basque Country, Spain.

出版信息

NPJ Genom Med. 2025 May 3;10(1):35. doi: 10.1038/s41525-025-00491-7.

Abstract

Precision medicine requires biomarkers that stratify patients and improve clinical outcomes. Although longitudinal multi-omic analyses provide insights into pathological states, their utility in stratifying healthy individuals remains underexplored. We performed a cross-sectional integrative study of three omic layers, including genomics, urine metabolomics, and serum metabolomics/lipoproteomics, on a cohort of 162 individuals without pathological manifestations. We studied each omic layer separately and after integration, concluding that multi-omic integration provides optimal stratification capacity. We identified four subgroups and, for a subset of 61 individuals, longitudinal data for two additional time-points allowed us to evaluate the temporal stability of the molecular profiles of each identified subgroup. Additional functional annotation uncovered accumulation of risk factors associated with dyslipoproteinemias in one subgroup, suggesting targeted monitoring could reduce future cardiovascular risks. Overall, our methodology uncovers the potential of multi-omic profiling to serve as a framework for precision medicine aimed at early prevention strategies.

摘要

精准医学需要能够对患者进行分层并改善临床结果的生物标志物。尽管纵向多组学分析能深入了解病理状态,但其在对健康个体进行分层方面的效用仍未得到充分探索。我们对162名无病理表现的个体进行了一项包括基因组学、尿液代谢组学和血清代谢组学/脂蛋白组学三个组学层面的横断面综合研究。我们分别对每个组学层面以及整合后的组学层面进行了研究,得出多组学整合具有最佳分层能力的结论。我们识别出了四个亚组,对于61名个体的一个子集,另外两个时间点的纵向数据使我们能够评估每个识别出的亚组分子谱的时间稳定性。进一步的功能注释揭示了一个亚组中与血脂异常相关的危险因素的积累,这表明有针对性的监测可以降低未来的心血管风险。总体而言,我们的方法揭示了多组学分析作为精准医学早期预防策略框架的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/103e/12049560/de24a9fb2eac/41525_2025_491_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验