Suppr超能文献

集成电动汽车的太阳能热电移动存储系统,用于减少农产品运输中的收获后损失和微生物损失。

Solar-thermoelectric mobile storage system integrated with electric vehicles for reducing postharvest and microbial losses in agro produce transportation.

作者信息

Nadimuthu Lalith Pankaj Raj, Victor Kirubakaran, Bajaj Mohit, Blazek Vojtech, Prokop Lukas

机构信息

Centre for Rural Energy, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.

Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India.

出版信息

Sci Rep. 2025 May 3;15(1):15522. doi: 10.1038/s41598-025-00501-9.

Abstract

Agriculture constitutes a foundational pillar of the Indian economy, contributing nearly 18% to the national Gross Domestic Product (GDP) and ranking second globally in horticultural output. Beyond its economic significance, the sector underpins rural employment, food security, and a wide range of agro-based downstream industries. Despite these strengths, Indian agriculture continues to encounter critical bottlenecks-most notably, post-harvest losses in fruits, which are estimated to range between 6.02% and 15.05%. These losses are predominantly attributed to the lack of accessible and decentralized cold storage infrastructure. Maintaining optimal temperature and humidity levels throughout the cold chain is essential to curtail physicochemical degradation and suppress microbial growth, both of which substantially diminish the quality and shelf life of perishable produce. This study introduces a solar photovoltaic (PV)-driven micro cold storage (MCS) system, specifically engineered for seamless integration with electric vehicles (EVs) to effectively mitigate post-harvest losses in perishable agricultural commodities. The research undertakes a comprehensive performance evaluation of the proposed system, which employs a thermoelectric cooling mechanism powered entirely by solar energy. Emphasis is placed on assessing the system's thermal, electrical, and microbial preservation capabilities under both static and dynamic operational conditions, highlighting its potential for sustainable and mobile cold chain applications in rural agricultural contexts. The system comprises a 100 Wp polycrystalline solar photovoltaic (PV) module, which supplies power to a 12 V/6A shunt-configured thermoelectric cooler with a 12 L storage capacity via a 12 V/8A solar charge controller. Functioning as an off-grid refrigeration unit, the system is supported by a 12 V/40Ah battery energy storage system. The experimental analysis focuses on assessing the shelf life of Vitis vinifera (grapes) over a one-week storage period by measuring physiological loss in weight (PLW) as the key parameter for evaluating storage efficiency. The refrigeration chamber maintains a controlled temperature range of + 2 °C to + 8 °C. Findings indicate a controlled weight reduction of up to 87.6% in refrigerated grapes compared to those stored under ambient conditions. Also, the system's performance to maintain proper storage conditions during short-distance transportation (six hours) is evaluated to demonstrate effective farm-to-market connectivity through electric vehicle utilization. The study evaluates the electrical and thermal performance of a system for renewable energy-integrated electric vehicle applications. It also investigates the effectiveness of a solar-powered modified controlled storage (MCS) system in preventing microbial growth and maintaining agro-produce quality during storage and transport. The microbial load, including bacterial, fungal, and yeast populations, was quantified using colony-forming unit (CFU) counts per millilitre to evaluate the system's efficacy in ensuring food safety. The findings underscore the environmental sustainability and practical applicability of the MCS system in the preservation of perishable agricultural produce. By enabling access to affordable, reliable, and renewable energy sources, the system directly contributes to the achievement of Sustainable Development Goal (SDG) 7, while simultaneously addressing food waste reduction and improving the efficiency and resilience of agro-supply chains.

摘要

农业是印度经济的基石,对国内生产总值(GDP)的贡献率近18%,园艺产量位居全球第二。除了经济意义外,该部门还支撑着农村就业、粮食安全以及众多以农业为基础的下游产业。尽管有这些优势,印度农业仍面临着关键瓶颈,最显著的是水果的产后损失,估计在6.02%至15.05%之间。这些损失主要归因于缺乏便捷且分散的冷藏基础设施。在整个冷链过程中维持最佳温度和湿度水平对于减少物理化学降解和抑制微生物生长至关重要,这两者都会大幅降低易腐农产品的质量和保质期。本研究介绍了一种太阳能光伏(PV)驱动的微型冷藏(MCS)系统,该系统经过专门设计,可与电动汽车(EV)无缝集成,以有效减少易腐农产品的产后损失。该研究对所提出的系统进行了全面的性能评估,该系统采用完全由太阳能驱动的热电冷却机制。重点评估了该系统在静态和动态运行条件下的热、电和微生物保存能力,突出了其在农村农业环境中可持续和移动冷链应用的潜力。该系统包括一个100Wp的多晶硅太阳能光伏(PV)模块,通过一个12V/8A的太阳能充电控制器,为一个存储容量为12L、采用并联配置的12V/6A热电冷却器供电。作为一个离网制冷单元,该系统由一个12V/40Ah的电池储能系统支持。实验分析的重点是通过测量重量生理损失(PLW)作为评估储存效率的关键参数,来评估酿酒葡萄在一周储存期内的保质期。冷藏室的温度控制在+2°C至+8°C范围内。研究结果表明,与在环境条件下储存的葡萄相比,冷藏葡萄的重量减少控制在87.6%以内。此外,还评估了该系统在短距离运输(六小时)期间维持适当储存条件的性能,以证明通过电动汽车的使用实现有效的从农场到市场的连接。该研究评估了用于可再生能源集成电动汽车应用的系统的电气和热性能。它还研究了太阳能驱动的改进型控制储存(MCS)系统在储存和运输过程中防止微生物生长和维持农产品质量的有效性。使用每毫升菌落形成单位(CFU)计数来量化包括细菌、真菌和酵母种群在内的微生物负荷,以评估该系统在确保食品安全方面的功效。研究结果强调了MCS系统在保存易腐农产品方面的环境可持续性和实际适用性。通过提供获得负担得起、可靠和可再生能源的途径,该系统直接有助于实现可持续发展目标(SDG)7,同时解决减少食物浪费问题,并提高农业供应链的效率和弹性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03d1/12049482/66c20fa83497/41598_2025_501_Fig9_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验