Suppr超能文献

通过混合分组分离RNA测序鉴定和表征栽培二粒小麦材料Lxd-682中的白粉病抗性

Identification and characterization of the powdery mildew resistance in cultivated emmer wheat accession Lxd-682 via bulked segregant RNA sequencing.

作者信息

Li Jiatong, Yu Ningning, Sun Nina, Geng Lige, Qie Yanmin, Zhai Dongfeng, Wang Yuxiang, Li Linzhi, Liu Xueqing, Sun Xusheng, Wang Jiangchun, Liu Ruishan, Pan Guantong, Zou Shengmao, Han Guohao, Jin Yuli, Ma Pengtao

机构信息

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.

Yantai Academy of Agricultural Sciences, Yantai, 265500, China.

出版信息

BMC Plant Biol. 2025 May 3;25(1):583. doi: 10.1186/s12870-025-06623-6.

Abstract

BACKGROUND

Common wheat (Triticum aestivum L.) is a vital source of nutrition for human consumption. However, wheat production is significantly threatened by various diseases, such as powdery mildew, a widespread fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). Utilizing and identifying resistance genes and elucidating the molecular mechanisms underlying this resistance are the most effective and sustainable ways to fight this disease.

RESULTS

Lxd-682, a cultivated emmer wheat accession, exhibited resistance to 12 out of 13 tested Bgt isolates at the seedling stage. Genetic analysis revealed that this resistance is conferred by a single dominant gene, tentatively designated as PmLxd-682. Molecular mapping positioned PmLxd-682 between the markers WGRE77413 and WGRC1096, with the Pm4-diagnostic marker JS717/JS718 co-segregating. Homology-based cloning and sequence alignment further confirmed that PmLxd-682 is identical to Pm4a. qRT-PCR analysis showed that the alternative splicing PmLxd-682-V2 exhibited higher expression level than that of PmLxd-682-V1 post-Bgt invasion, suggesting its prominent role in fighting Bgt invasion. Additionally, four pathogenesis-related (PR) genes were significantly up-regulated in both Lxd-682 and susceptible parent Langdon upon infection, revealing possibly unimportant roles in resistance pathway. Furthermore, 1,567 differentially expressed genes (DEGs) between resistant and susceptible bulks were identified through BSR-Seq, with 490 ones located within the candidate interval on chromosome 2AL, and potential biological processes associated with resistance were enriched via gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. To verify the potential regulatory genes, three key genes, TRITD2 Av1G294940, TRITD2 Av1G036490 and TRITD2 Av1G295220 all encoding disease resistance protein, were selected from six candidates via qRT-PCR following post-Bgt invasion. Molecular markers JS717/JS718 and WGRC1096 were confirmed to be available for marker-assisted selection (MAS) of PmLxd-682 in breeding practices.

CONCLUSIONS

The study identified key genetic intervals and genes involved in the resistance of a cultivated emmer wheat accession Lxd-682 to powdery mildew. These findings significantly advance our understanding of plant-pathogen interactions and establish a solid foundation for future genetic and functional studies aimed at improving disease resistance in crops.

摘要

背景

普通小麦(Triticum aestivum L.)是人类重要的营养来源。然而,小麦生产受到多种病害的严重威胁,如白粉病,这是一种由小麦白粉菌(Blumeria graminis f. sp. tritici,Bgt)引起的广泛传播的真菌病害。利用和鉴定抗性基因并阐明其抗性的分子机制是对抗这种病害最有效和可持续的方法。

结果

栽培二粒小麦种质Lxd - 682在苗期对13个测试的Bgt分离株中的12个表现出抗性。遗传分析表明,这种抗性由一个单显性基因控制,暂命名为PmLxd - 682。分子定位将PmLxd - 682定位在标记WGRE77413和WGRC1096之间,Pm4诊断标记JS717/JS718共分离。基于同源性的克隆和序列比对进一步证实PmLxd - 682与Pm4a相同。qRT - PCR分析表明,Bgt侵染后,可变剪接体PmLxd - 682 - V2的表达水平高于PmLxd - 682 - V1,表明其在对抗Bgt侵染中起重要作用。此外,四个病程相关(PR)基因在Lxd - 682和感病亲本Langdon中受侵染后均显著上调,表明其在抗性途径中可能作用不大。此外,通过BSR - Seq鉴定了抗性和感病混合群体之间的1567个差异表达基因(DEG),其中490个位于2AL染色体上的候选区间内,通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析富集了与抗性相关的潜在生物学过程。为了验证潜在的调控基因,在Bgt侵染后通过qRT - PCR从六个候选基因中选择了三个关键基因TRITD2 Av1G294940、TRITD2 Av1G036490和TRITD2 Av1G295220,它们均编码抗病蛋白。分子标记JS717/JS718和WGRC1096被证实可用于育种实践中PmLxd - 682的标记辅助选择(MAS)。

结论

该研究鉴定了栽培二粒小麦种质Lxd - 682对白粉病抗性相关的关键遗传区间和基因。这些发现显著推进了我们对植物 - 病原体相互作用的理解,并为未来旨在提高作物抗病性的遗传和功能研究奠定了坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/857e/12048989/800cda00fbec/12870_2025_6623_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验