Suppr超能文献

酰基高丝氨酸内酯(AHL)介导的群体感应驱动藻类-细菌生物膜系统中的微生物群落演替和代谢途径。

AHL-mediated quorum sensing drives microbial community succession and metabolic pathway in algal-bacterial biofilm system.

作者信息

Liu Zuocheng, Zeng Ting, Wang Jinlong, Wang Zongping, Zhao Daotong, Wei Junchi, Peng Yongzhen, Miao Lei

机构信息

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.

College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China.

出版信息

Water Res. 2025 Aug 15;282:123702. doi: 10.1016/j.watres.2025.123702. Epub 2025 Apr 22.

Abstract

Microalgae, ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing bacteria (AnAOB) have been proven to form an integrated algal-bacterial biofilm system with over 93 % of total nitrogen removal. Compared to conventional nitrification-denitrification process, this system operated without additional organic carbon or aeration. In order to understand the interaction mechanisms between bacteria and algae, this study investigated microbial community succession, the changes in metabolic pathways and the potential role of acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) during the formation of the algae/partial nitrification/anammox biofilm system. Within this algal-bacterial symbiotic biofilm, the dominant genera identified were Candidatus_Brocadia (AnAOB), Nitrosomonas (AOB), and Geitlerinema (microalgae), with relative abundances of 13.86 %, 6.37 %, and 2.88 %, respectively. Compared with the first two stages, the abundance of genes related to nitrogen metabolism pathways (anaerobic ammonium oxidation, denitrification, and ammonia assimilation) increased, indicating enhanced nitrogen transformation capacity in the algal-bacterial symbiotic stage. Co-occurrence network analysis also revealed enhanced microbial interactions, with increased negative correlations (from 36.07 % to 39.38 %), high average standard betweenness centrality (from 0.193 to 0.304), and reduced community vulnerability (from 0.037 to 0.028), contributing to biofilm stability and resilience. The variations in AHLs provided direct evidence for more frequent interspecies communication, facilitating the ecological reconfiguration in the biofilm. Overall, the close synergistic relationship between microalgae and bacteria supports stable biofilm development and high nitrogen removal efficiency.

摘要

微藻、氨氧化细菌(AOB)和厌氧氨氧化细菌(AnAOB)已被证明能形成一个综合的藻菌生物膜系统,总氮去除率超过93%。与传统的硝化反硝化工艺相比,该系统运行时无需额外的有机碳或曝气。为了了解细菌与藻类之间的相互作用机制,本研究调查了藻类/部分硝化/厌氧氨氧化生物膜系统形成过程中的微生物群落演替、代谢途径变化以及酰基高丝氨酸内酯(AHL)介导的群体感应(QS)的潜在作用。在这个藻菌共生生物膜中,鉴定出的优势属为“Candidatus_Brocadia”(厌氧氨氧化细菌)、亚硝化单胞菌属(氨氧化细菌)和鞘丝藻属(微藻),相对丰度分别为13.86%、6.37%和2.88%。与前两个阶段相比,与氮代谢途径(厌氧氨氧化、反硝化和氨同化)相关的基因丰度增加,表明藻菌共生阶段的氮转化能力增强。共现网络分析还揭示了微生物相互作用增强,负相关性增加(从36.07%增至39.38%),平均标准中介中心性较高(从0.193增至0.304),群落脆弱性降低(从0.037降至0.028),这有助于生物膜的稳定性和恢复力。AHLs的变化为更频繁的种间通讯提供了直接证据,促进了生物膜中的生态重构。总体而言,微藻与细菌之间紧密的协同关系支持了稳定的生物膜发育和高氮去除效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验