Chen Zeyao, Zhang Changxi, Xu Bing, Ma Zhiping, Zhao Jing, Nie Mengzhen, Mao Yaping, Zhang Kechun
Zhejiang University, Hangzhou, 310058, PR China; Westlake University, Hangzhou, 310030, PR China.
Westlake University, Hangzhou, 310030, PR China.
Metab Eng. 2025 May 2;91:192-203. doi: 10.1016/j.ymben.2025.05.001.
Ethylene glycol (EG), a major product of the enzymatic degradation of polyethylene terephthalate (PET), provides a promising feedstock for sustainable biomanufacturing. Herein, we developed a novel metabolic pathway using Escherichia coli(E. coli) as a host for the biosynthesis of four-carbon compounds such as 1,4-butanediol (1,4-BDO), 1,2,4-butanetriol (1,2,4-BTO), and succinate, from two-carbon substrates such as glycolate and EG. This represents an efficient strategy of using C2 precursors for these high-value chemicals. Through directed evolution of the β-ketoacyl thiolase B of Cupriavidus necator (CnBktB), one of the rate-limiting enzymes in the pathway, via an established growth-coupled screening platform, we identified the L89S mutant, which exhibits significantly enhanced catalytic efficiency in assimilating glycolyl-CoA and acetyl-CoA. Using glycolate and glucose as substrates, the route achieves production titers of >200 mg/L for 1,4-BDO, 266 mg/L for 1,2,4-BTO, and 9.22 g/L for succinate. Furthermore, integrating an upstream module for EG conversion to glycolate allows direct utilization of PET-derived EG, yielding 11.4 g/L succinate with 93 % conversion efficiency from EG. This work bridges the fields of synthetic biology and plastic waste recycling, demonstrating a sustainable and scalable route for converting PET-derived EG into valuable four-carbon compounds. The novel biosynthetic pathways developed in this study offer a foundation for advancing circular bioeconomy strategies and reducing the environmental impact of plastic waste.
乙二醇(EG)是聚对苯二甲酸乙二酯(PET)酶促降解的主要产物,为可持续生物制造提供了一种有前景的原料。在此,我们开发了一种新的代谢途径,以大肠杆菌(E. coli)为宿主,从乙醇酸和EG等二碳底物生物合成四碳化合物,如1,4 - 丁二醇(1,4 - BDO)、1,2,4 - 丁三醇(1,2,4 - BTO)和琥珀酸。这代表了一种利用C2前体生产这些高价值化学品的有效策略。通过在已建立的生长偶联筛选平台上对该途径中的限速酶之一——食酸丛毛单胞菌(Cupriavidus necator)的β - 酮酰基硫解酶B(CnBktB)进行定向进化,我们鉴定出了L89S突变体,其在同化乙醇酰 - CoA和乙酰 - CoA方面表现出显著提高的催化效率。以乙醇酸和葡萄糖为底物,该途径实现了1,4 - BDO的产量>200 mg/L、1,2,4 - BTO的产量为266 mg/L以及琥珀酸的产量为9.22 g/L。此外,整合一个将EG转化为乙醇酸的上游模块可以直接利用PET衍生的EG,从EG中产生11.4 g/L的琥珀酸,转化效率为93%。这项工作架起了合成生物学和塑料废物回收领域之间的桥梁,展示了一条将PET衍生的EG转化为有价值的四碳化合物的可持续且可扩展的途径。本研究中开发的新型生物合成途径为推进循环生物经济战略和减少塑料废物对环境的影响奠定了基础。