Suppr超能文献

通过多节点代谢调控定制大肠杆菌以高产O-乙酰-L-高丝氨酸

Tailoring Escherichia coli for high-yield production of O-acetyl-L-homoserine through multi-node metabolic regulation.

作者信息

Chen Yuanyuan, Huang Lianggang, Yu Tao, Zhao Mingming, Zhou Junping, Wang Lijuan, Liu Zhiqiang, Zheng Yuguo

机构信息

The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.

The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.

出版信息

Metab Eng. 2025 Sep;91:455-465. doi: 10.1016/j.ymben.2025.06.010. Epub 2025 Jun 30.

Abstract

O-acetyl-L-homoserine (OAH) is a key precursor for the biosynthesis of L-methionine and various C4 compounds, with significant industrial potential. However, efficient microbial production of OAH remains challenging due to complex metabolic regulation and precursor limitations. In this study, we rationally developed a plasmid-free, non-auxotrophic Escherichia coli strain to produce OAH. We modularized the OAH synthetic pathway into L-homoserine and acetyl-CoA modules, enhanced each module individually, and identified a highly efficient L-homoserine O-acetyltransferase (MetX) from Cyclobacterium marinum. Using small RNA screening, we pinpointed critical metabolic nodes and fine-tuned the pathway flux through promoter engineering and regulatory elements. Notably, we balanced the acetyl-CoA and L-homoserine synthesis with moderate expression of pyruvate carboxylase, weakened the TCA cycle by modulating citrate synthase and the branched-chain amino acid pathway by attenuating BCAA aminotransferase, thereby redirecting carbon flux towards OAH production. Additionally, we optimized the threonine attenuator for dynamic regulation of the threonine pathway and enhanced intracellular ATP turnover. Under a two-stage pH control fermentation strategy, the final plasmid-free and non-auxotrophic strain OAH37 achieved a titer of 94.1 g/L OAH, with a yield of 0.42 g/g glucose and a productivity of 1.37 g/L/h. Our work demonstrates the potential of metabolic engineering strategies for efficient microbial synthesis of OAH, providing a foundation for industrial-scale production of this important precursor.

摘要

O-乙酰基-L-高丝氨酸(OAH)是L-甲硫氨酸和各种C4化合物生物合成的关键前体,具有巨大的工业潜力。然而,由于复杂的代谢调控和前体限制,通过微生物高效生产OAH仍然具有挑战性。在本研究中,我们合理构建了一种无质粒、非营养缺陷型的大肠杆菌菌株来生产OAH。我们将OAH合成途径模块化分为L-高丝氨酸模块和乙酰辅酶A模块,分别对每个模块进行强化,并从海环杆菌中鉴定出一种高效的L-高丝氨酸O-乙酰基转移酶(MetX)。通过小RNA筛选,我们确定了关键的代谢节点,并通过启动子工程和调控元件对途径通量进行微调。值得注意的是,我们通过适度表达丙酮酸羧化酶来平衡乙酰辅酶A和L-高丝氨酸的合成,通过调节柠檬酸合酶来削弱三羧酸循环,并通过减弱支链氨基酸转氨酶来调控支链氨基酸途径,从而将碳通量重新导向OAH的生产。此外,我们优化了苏氨酸衰减子以动态调控苏氨酸途径并增强细胞内ATP周转。在两阶段pH控制发酵策略下,最终构建的无质粒、非营养缺陷型菌株OAH37的OAH产量达到94.1 g/L,葡萄糖产率为0.42 g/g,生产速率为1.37 g/L/h。我们的工作证明了代谢工程策略在微生物高效合成OAH方面的潜力,为这种重要前体的工业规模生产奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验