Jin Sangrak, Ganesh Irisappan, Bae Jiyun, Lee Donghwi, Kang Seulgi, Lee Hyeonsik, Lee Jeong Wook, Cho Byung-Kwan
Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea; Department of Biotechnology, Yeungnam University, Gyeongbuk, 38542, South Korea.
Department of Chemical Engineering, Pohang University of Science and Technology, Gyeongbuk, 37673, South Korea.
Metab Eng. 2025 Sep;91:290-301. doi: 10.1016/j.ymben.2025.04.012. Epub 2025 May 10.
Dynamic sensing of gas substrates like toxic carbon monoxide (CO) in living microbial cells is often limited due to the lack of suitable biosensors. Here, we integrated the CO-binding transcription activators, CooA and RcoM1, with an O-independent fluorescent reporter system, Halo-tag, to develop CO-sensing modules (ON/OFF) capable of detecting CO concentrations in the strictly anaerobic acetogenic bacterium Eubacterium limosum. Furthermore, we employed CooA as the CO-sensing ON module to activate the target genes for 2,3-butanediol (2,3-BDO) biosynthesis, achieving a 1.7-fold increase in 2,3-BDO yield. These results indicate that the CO-ON module effectively redirects carbon flux toward target product biosynthesis pathway in acetogens. However, during CO gas with glucose mixotrophic fermentation, lactate emerged as the predominant product. To enhance target pathway flux using the CO-ON module, we deleted the lactate pathway in E. limosum using CRISPR/Cas9. The resulting engineered strain showed an 18.5 % increase in carbon utilization for 2,3-BDO production under CO sensing culture conditions. This optimized platform strain subsequently produced approximately 52 g/L of 2,3-BDO during two stage CO-glucose mixotrophic fermentation. Our results provide orthogonal CO-sensing transcriptional regulatory modules for engineering metabolic pathways that efficiently convert CO into value-added biochemicals using acetogenic biocatalysts.
由于缺乏合适的生物传感器,对活的微生物细胞中的气体底物(如有毒一氧化碳(CO))进行动态传感往往受到限制。在此,我们将CO结合转录激活因子CooA和RcoM1与一个不依赖O的荧光报告系统Halo-tag整合,以开发能够检测严格厌氧产乙酸细菌迟缓真杆菌中CO浓度的CO传感模块(开/关)。此外,我们使用CooA作为CO传感开启模块来激活用于2,3-丁二醇(2,3-BDO)生物合成的靶基因,使2,3-BDO产量提高了1.7倍。这些结果表明,CO开启模块有效地将碳通量重定向到产乙酸菌中靶产物生物合成途径。然而,在CO气体与葡萄糖的混合营养发酵过程中,乳酸成为主要产物。为了使用CO开启模块增强靶途径通量,我们使用CRISPR/Cas9删除了迟缓真杆菌中的乳酸途径。所得工程菌株在CO传感培养条件下,用于2,3-BDO生产的碳利用率提高了18.5%。这种优化的平台菌株随后在两阶段CO-葡萄糖混合营养发酵过程中产生了约52 g/L的2,3-BDO。我们的结果为工程代谢途径提供了正交的CO传感转录调控模块,该代谢途径使用产乙酸生物催化剂将CO高效转化为增值生化物质。