Suppr超能文献

利用一氧化碳气体感应转录开/关模块对产乙酸细菌进行代谢工程改造。

Metabolic engineering of acetogenic bacteria using CO gas-sensing transcriptional ON/OFF modules.

作者信息

Jin Sangrak, Ganesh Irisappan, Bae Jiyun, Lee Donghwi, Kang Seulgi, Lee Hyeonsik, Lee Jeong Wook, Cho Byung-Kwan

机构信息

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea; Department of Biotechnology, Yeungnam University, Gyeongbuk, 38542, South Korea.

Department of Chemical Engineering, Pohang University of Science and Technology, Gyeongbuk, 37673, South Korea.

出版信息

Metab Eng. 2025 Sep;91:290-301. doi: 10.1016/j.ymben.2025.04.012. Epub 2025 May 10.

Abstract

Dynamic sensing of gas substrates like toxic carbon monoxide (CO) in living microbial cells is often limited due to the lack of suitable biosensors. Here, we integrated the CO-binding transcription activators, CooA and RcoM1, with an O-independent fluorescent reporter system, Halo-tag, to develop CO-sensing modules (ON/OFF) capable of detecting CO concentrations in the strictly anaerobic acetogenic bacterium Eubacterium limosum. Furthermore, we employed CooA as the CO-sensing ON module to activate the target genes for 2,3-butanediol (2,3-BDO) biosynthesis, achieving a 1.7-fold increase in 2,3-BDO yield. These results indicate that the CO-ON module effectively redirects carbon flux toward target product biosynthesis pathway in acetogens. However, during CO gas with glucose mixotrophic fermentation, lactate emerged as the predominant product. To enhance target pathway flux using the CO-ON module, we deleted the lactate pathway in E. limosum using CRISPR/Cas9. The resulting engineered strain showed an 18.5 % increase in carbon utilization for 2,3-BDO production under CO sensing culture conditions. This optimized platform strain subsequently produced approximately 52 g/L of 2,3-BDO during two stage CO-glucose mixotrophic fermentation. Our results provide orthogonal CO-sensing transcriptional regulatory modules for engineering metabolic pathways that efficiently convert CO into value-added biochemicals using acetogenic biocatalysts.

摘要

由于缺乏合适的生物传感器,对活的微生物细胞中的气体底物(如有毒一氧化碳(CO))进行动态传感往往受到限制。在此,我们将CO结合转录激活因子CooA和RcoM1与一个不依赖O的荧光报告系统Halo-tag整合,以开发能够检测严格厌氧产乙酸细菌迟缓真杆菌中CO浓度的CO传感模块(开/关)。此外,我们使用CooA作为CO传感开启模块来激活用于2,3-丁二醇(2,3-BDO)生物合成的靶基因,使2,3-BDO产量提高了1.7倍。这些结果表明,CO开启模块有效地将碳通量重定向到产乙酸菌中靶产物生物合成途径。然而,在CO气体与葡萄糖的混合营养发酵过程中,乳酸成为主要产物。为了使用CO开启模块增强靶途径通量,我们使用CRISPR/Cas9删除了迟缓真杆菌中的乳酸途径。所得工程菌株在CO传感培养条件下,用于2,3-BDO生产的碳利用率提高了18.5%。这种优化的平台菌株随后在两阶段CO-葡萄糖混合营养发酵过程中产生了约52 g/L的2,3-BDO。我们的结果为工程代谢途径提供了正交的CO传感转录调控模块,该代谢途径使用产乙酸生物催化剂将CO高效转化为增值生化物质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验