Kim Kisik, Gulenko Oleksandra
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
Biomed Opt Express. 2025 Mar 26;16(4):1638-1650. doi: 10.1364/BOE.560563. eCollection 2025 Apr 1.
Reconstruction-based acoustic-resolution photoacoustic microscopy (AR-PAM) has been developed to extend the depth of field (DOF), enabling simultaneous observation of structures at multiple depths. However, conventional AR-PAM systems, which rely on focused transducers, face inherent limitations in effectively increasing the DOF. To address this issue, we developed a needle hydrophone (NH)-based AR-PAM system that enables deep imaging with enhanced resolution and improved DOF. The proposed system was validated using tissue-mimicking phantoms and chick embryo imaging. Our results demonstrated a DOF exceeding 20 mm, a lateral resolution comparable to the NH diameter (∼400 µm) at shallow depth (10 mm) and 870 µm at deep depth (30 mm), and an axial resolution of 250 µm. Furthermore, we investigated the impact of different reconstruction techniques, including the measured impulse response function (MIRF), simulated impulse response function (SIRF), and coherence factor (CF). Our comparative analysis revealed that MIRF-based reconstruction provided superior performance in maintaining resolution and image quality across varying depths, making it the most effective approach for multi-depth imaging.
基于重建的声学分辨率光声显微镜(AR-PAM)已被开发出来以扩展景深(DOF),从而能够同时观察多个深度的结构。然而,传统的依赖聚焦换能器的AR-PAM系统在有效增加景深方面存在固有局限性。为了解决这个问题,我们开发了一种基于针状水听器(NH)的AR-PAM系统,该系统能够实现具有更高分辨率和更好景深的深度成像。所提出的系统使用仿组织体模和鸡胚成像进行了验证。我们的结果表明,景深超过20毫米,在浅深度(10毫米)处横向分辨率与NH直径相当(约400微米),在深深度(30毫米)处为870微米,轴向分辨率为250微米。此外,我们研究了不同重建技术的影响,包括测量脉冲响应函数(MIRF)、模拟脉冲响应函数(SIRF)和相干因子(CF)。我们的对比分析表明,基于MIRF的重建在不同深度保持分辨率和图像质量方面具有卓越性能,使其成为多深度成像最有效的方法。