Suppr超能文献

基于两阶段深度学习网络的深度扩展声学分辨率光声显微镜

Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network.

作者信息

Meng Jing, Zhang Xueting, Liu Liangjian, Zeng Silue, Fang Chihua, Liu Chengbo

机构信息

School of Computer, Qufu Normal University, Rizhao 276826, China.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2022 Jul 27;13(8):4386-4397. doi: 10.1364/BOE.461183. eCollection 2022 Aug 1.

Abstract

Acoustic resolution photoacoustic microscopy (AR-PAM) is a major modality of photoacoustic imaging. It can non-invasively provide high-resolution morphological and functional information about biological tissues. However, the image quality of AR-PAM degrades rapidly when the targets move far away from the focus. Although some works have been conducted to extend the high-resolution imaging depth of AR-PAM, most of them have a small focal point requirement, which is generally not satisfied in a regular AR-PAM system. Therefore, we propose a two-stage deep learning (DL) reconstruction strategy for AR-PAM to recover high-resolution photoacoustic images at different out-of-focus depths adaptively. The residual U-Net with attention gate was developed to implement the image reconstruction. We carried out phantom and experiments to optimize the proposed DL network and verify the performance of the proposed reconstruction method. Experimental results demonstrated that our approach extends the depth-of-focus of AR-PAM from 1mm to 3mm under the 4 mJ/cm light energy used in the imaging system. In addition, the imaging resolution of the region 2 mm far away from the focus can be improved, similar to the in-focus area. The proposed method effectively improves the imaging ability of AR-PAM and thus could be used in various biomedical studies needing deeper depth.

摘要

声学分辨率光声显微镜(AR-PAM)是光声成像的一种主要模态。它能够非侵入性地提供关于生物组织的高分辨率形态和功能信息。然而,当目标远离焦点时,AR-PAM的图像质量会迅速下降。尽管已经开展了一些工作来扩展AR-PAM的高分辨率成像深度,但其中大多数对焦点要求较小,这在常规的AR-PAM系统中通常无法满足。因此,我们提出了一种用于AR-PAM的两阶段深度学习(DL)重建策略,以自适应地恢复不同离焦深度下的高分辨率光声图像。开发了带有注意力门的残差U-Net来实现图像重建。我们进行了体模实验以优化所提出的DL网络,并验证所提出重建方法的性能。实验结果表明,在成像系统使用的4 mJ/cm光能下,我们的方法将AR-PAM的焦深从1mm扩展到了3mm。此外,离焦点2mm处区域的成像分辨率可以得到提高,类似于焦内区域。所提出的方法有效地提高了AR-PAM的成像能力,因此可用于各种需要更深深度的生物医学研究。

相似文献

1
Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network.
Biomed Opt Express. 2022 Jul 27;13(8):4386-4397. doi: 10.1364/BOE.461183. eCollection 2022 Aug 1.
2
Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy.
Biomed Opt Express. 2020 Nov 3;11(12):6826-6839. doi: 10.1364/BOE.411257. eCollection 2020 Dec 1.
3
Deep and Domain Transfer Learning Aided Photoacoustic Microscopy: Acoustic Resolution to Optical Resolution.
IEEE Trans Med Imaging. 2022 Dec;41(12):3636-3648. doi: 10.1109/TMI.2022.3192072. Epub 2022 Dec 2.
4
High-resolution photoacoustic microscopy with deep penetration through learning.
Photoacoustics. 2021 Nov 3;25:100314. doi: 10.1016/j.pacs.2021.100314. eCollection 2022 Mar.
5
Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging deep CNN prior.
Photoacoustics. 2023 Apr 1;30:100484. doi: 10.1016/j.pacs.2023.100484. eCollection 2023 Apr.
7
Acoustic resolution photoacoustic microscopy based on microelectromechanical systems scanner.
J Biophotonics. 2020 Feb;13(2):e201960127. doi: 10.1002/jbio.201960127. Epub 2019 Nov 19.
9
High-speed simultaneous multiscale photoacoustic microscopy.
J Biomed Opt. 2019 Aug;24(8):1-7. doi: 10.1117/1.JBO.24.8.086001.

引用本文的文献

1
A comprehensive review of high-performance photoacoustic microscopy systems.
Photoacoustics. 2025 Jun 4;44:100739. doi: 10.1016/j.pacs.2025.100739. eCollection 2025 Aug.

本文引用的文献

1
Multispectral photoacoustic holography of elastomers from a bright background.
Opt Lett. 2021 Oct 1;46(19):5071-5074. doi: 10.1364/OL.441660.
2
Deep learning in photoacoustic imaging: a review.
J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.040901.
3
Spectral interferometric depth-resolved photoacoustic viscoelasticity imaging.
Opt Lett. 2021 Apr 1;46(7):1724-1727. doi: 10.1364/OL.415368.
4
Deep learning for biomedical photoacoustic imaging: A review.
Photoacoustics. 2021 Feb 2;22:100241. doi: 10.1016/j.pacs.2021.100241. eCollection 2021 Jun.
5
Deep Learning Enables Superior Photoacoustic Imaging at Ultralow Laser Dosages.
Adv Sci (Weinh). 2020 Dec 21;8(3):2003097. doi: 10.1002/advs.202003097. eCollection 2021 Feb.
6
Pendant breast immobilization and positioning in photoacoustic tomographic imaging.
Photoacoustics. 2020 Dec 26;21:100238. doi: 10.1016/j.pacs.2020.100238. eCollection 2021 Mar.
7
Review of deep learning for photoacoustic imaging.
Photoacoustics. 2020 Dec 29;21:100215. doi: 10.1016/j.pacs.2020.100215. eCollection 2021 Mar.
8
Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy.
Biomed Opt Express. 2020 Nov 3;11(12):6826-6839. doi: 10.1364/BOE.411257. eCollection 2020 Dec 1.
9
Deep learning protocol for improved photoacoustic brain imaging.
J Biophotonics. 2020 Oct;13(10):e202000212. doi: 10.1002/jbio.202000212. Epub 2020 Aug 17.
10
Segmentation of teeth in panoramic dental X-ray images using U-Net with a loss function weighted on the tooth edge.
Radiol Phys Technol. 2021 Mar;14(1):64-69. doi: 10.1007/s12194-020-00603-1. Epub 2021 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验