Suppr超能文献

整合数据集以剖析RNA和转录依赖性功能:敲低策略的比较转录组分析

Integrating datasets to dissect RNA- and transcription-dependent functions: comparative transcriptome profiling of knockdown strategies.

作者信息

Pagani Giulia, Pandini Cecilia, Tassinari Martina, Gandellini Paolo

机构信息

Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.

出版信息

Data Brief. 2025 Apr 15;60:111565. doi: 10.1016/j.dib.2025.111565. eCollection 2025 Jun.

Abstract

The recent discovery of antisense RNAs (asRNAs) as key regulators of biological processes has highlighted the need to challenge their mechanism(s) of action using complementary approaches. Indeed, asRNAs can act on their sense gene or on distally located targets, by exploiting either transcription- or RNA-dependent mechanisms. Here we present a comparative transcriptome profiling of cancer cells knocked-down for the asRNA with two different approaches: i) Gapmer Antisense Oligonucleotides to assess RNA-dependent mechanisms, and ii) CRISPR/Cas9 deletion of the transcription start site to study transcription-dependent mechanisms. We describe in detail the strategies used to silence the asRNA and evaluate the consequences at the transcriptome level by RNA-sequencing. Moreover, we outline the analyses conducted to correctly manage the variability across replicates and the off-target effects of either method. The integration of the obtained datasets revealed commonalities and divergencies of the two approaches, which was fundamental for dissecting function. The information reported here can help researchers to reuse the data described in the datasets. Finally, the comparative workflow can be potentially applied to the functional study of any asRNA of interest.

摘要

反义RNA(asRNA)作为生物过程的关键调节因子的最新发现,凸显了使用互补方法挑战其作用机制的必要性。事实上,asRNA可以通过利用转录或RNA依赖性机制,作用于其正义基因或位于远端的靶标。在这里,我们展示了用两种不同方法敲低asRNA的癌细胞的比较转录组分析:i)Gapmer反义寡核苷酸,用于评估RNA依赖性机制;ii)转录起始位点的CRISPR/Cas9缺失,用于研究转录依赖性机制。我们详细描述了用于沉默asRNA的策略,并通过RNA测序评估转录组水平的结果。此外,我们概述了为正确管理重复样本间的变异性和每种方法脱靶效应而进行的分析。所获数据集的整合揭示了两种方法的共性和差异,这对剖析功能至关重要。这里报告的信息可帮助研究人员重新利用数据集中描述的数据。最后,这种比较工作流程可能适用于任何感兴趣的asRNA的功能研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa2/12048806/eaf297ea6035/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验