Vallejo Julian A, Gray Mark, Klump Jackson, Wacker Andrew, Dallas Mark, Johnson Mark L, Wacker Michael J
University of Missouri - Kansas City, School of Medicine, Department of Biomedical Sciences, USA.
University of Missouri - Kansas City, School of Dentistry, Department of Oral & Craniofacial Sciences, USA.
Bone Rep. 2025 Apr 16;25:101844. doi: 10.1016/j.bonr.2025.101844. eCollection 2025 Jun.
Cardiovascular disease and osteoporosis are clinically associated. Bone adapts to mechanical forces by altering its overall structure and mass. In response to mechanical strain bone cells release signaling molecules and activate the nervous system. Bone also exhibits endocrine functions that modulate a number of tissues including the heart. We hypothesized that bone mechanical loading acutely alters cardiac function via neural and/or endocrine mechanisms. To test this hypothesis, we performed in vivo tibia mechanical loading in anesthetized mice while monitoring heart parameters using electrocardiogram (ECG). An immediate, transient reduction in resting heart rate was observed during tibial loading in both adult male and female mice ( < 0.01) with concurrent increases in heart rate variability (HRV) (p < 0.01). ECG intervals, PR, QRS and QTc were unaffected with loading. In further studies, we found that at least 3 N of load was necessary to elicit this heart response in adult mice. With aging to 11-12 months the responsiveness of the heart to loading was blunted, suggesting this bone-heart connection may weaken with age. Administration of lidocaine around the tibia significantly diminished the heart rate response to bone loading ( < 0.05). Moreover, pre-treatment with sympathetic antagonist propranolol inhibited this heart rate response to loading ( < 0.05), while parasympathetic antagonist atropine did not ( > 0.05). This suggests that a neuronal afferent pathway in the hindlimb and reduction in efferent sympathetic tone mediate this bone-neuro-heart reflex. In conclusion, the findings that tibia bone loading age-dependently modulates heart function support the concept of physiological coupling of the skeletal and cardiovascular systems.
心血管疾病与骨质疏松症在临床上存在关联。骨骼通过改变其整体结构和质量来适应机械力。作为对机械应变的反应,骨细胞会释放信号分子并激活神经系统。骨骼还具有内分泌功能,可调节包括心脏在内的多种组织。我们推测,骨骼机械负荷会通过神经和/或内分泌机制急性改变心脏功能。为了验证这一假设,我们在麻醉的小鼠身上进行了体内胫骨机械负荷实验,同时使用心电图(ECG)监测心脏参数。在成年雄性和雌性小鼠的胫骨负荷过程中,均观察到静息心率立即出现短暂下降(<0.01),同时心率变异性(HRV)增加(p<0.01)。负荷过程中,心电图间期PR、QRS和QTc均未受影响。在进一步的研究中,我们发现成年小鼠至少需要3 N的负荷才能引发这种心脏反应。随着年龄增长至11 - 12个月,心脏对负荷的反应性减弱,这表明这种骨 - 心连接可能会随着年龄增长而减弱。在胫骨周围注射利多卡因可显著减弱心脏对骨骼负荷的心率反应(<0.05)。此外,用交感神经拮抗剂普萘洛尔预处理可抑制这种对负荷的心率反应(<0.05),而副交感神经拮抗剂阿托品则无此作用(>0.05)。这表明后肢的神经元传入通路和传出交感神经张力的降低介导了这种骨 - 神经 - 心反射。总之,胫骨负荷随年龄调节心脏功能的研究结果支持了骨骼系统与心血管系统生理耦合的概念。