Streng Raphael L, Reiser Samuel, Senyshyn Anatoliy, Wager Sabrina, Sterzinger Johannes, Schneider Peter, Gryc David, Hussain Mian Zahid, Bandarenka Aliaksandr S
Physics of Energy Conversion and Storage, Department of Physics, Technische Universität München (TUM), James-Franck-Str. 1, 85748, Garching, Germany.
Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748, Garching, Germany.
Adv Sci (Weinh). 2025 Jul;12(25):e2417587. doi: 10.1002/advs.202417587. Epub 2025 May 5.
Lithium-free aqueous batteries (LFABs) offer a sustainable alternative to lithium-ion batteries for large-scale energy storage, addressing issues like material scarcity and flammability. However, their economic viability is limited by low energy density and cycle life due to the narrow electrochemical stability window of water and active material dissolution. High-concentration water-in-salt electrolytes typically used to tackle these issues are expensive and potentially hazardous. This work presents a novel, cost-efficient electrolyte design using safe salts at lower concentrations. The influence of different cation species on the copper hexacyanoferrate cathode and polyimide anode is systematically explored, optimizing the electrolyte for improved cell voltage and cycling stability. The resulting battery, with a 1.8 mol kg MgCl + 1.8 mol kg⁻ KCl aqueous electrolyte, achieves a competitive energy density of 48 Wh kg⁻¹ and 95% efficiency. It also shows 70% capacity retention even at extremely high (dis-)charge rates of 50 C and a maximum specific power of over 10000 W kg⁻¹, indicating its strong potential for supercapacitor applications. Utilizing exclusively inexpensive and safe salts, this work significantly advances the practical application of low-cost LFABs for large-scale energy storage.
无锂水系电池(LFABs)为大规模储能提供了一种可持续的锂离子电池替代方案,解决了材料稀缺和易燃性等问题。然而,由于水的电化学稳定性窗口窄以及活性材料溶解,其能量密度和循环寿命较低,限制了其经济可行性。通常用于解决这些问题的高浓度盐包水电解质价格昂贵且有潜在危险。这项工作提出了一种新颖的、具有成本效益的电解质设计,使用较低浓度的安全盐。系统地探索了不同阳离子种类对六氰合铁酸铜阴极和聚酰亚胺阳极的影响,优化电解质以提高电池电压和循环稳定性。所得电池采用1.8 mol kg⁻¹ MgCl₂ + 1.8 mol kg⁻¹ KCl水系电解质,实现了48 Wh kg⁻¹的竞争能量密度和95%的效率。即使在50 C的极高充放电率下,它也能保持70%的容量,最大比功率超过10000 W kg⁻¹,表明其在超级电容器应用方面具有强大潜力。这项工作仅使用廉价且安全的盐,显著推进了低成本LFABs在大规模储能中的实际应用。