DeFelipe Javier
Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, 28223, Pozuelo de Alarcón, Madrid, Spain.
Instituto Cajal, CSIC, Avenida Doctor Arce, 37, 28002, Madrid, Spain.
Anat Sci Int. 2025 May 5. doi: 10.1007/s12565-025-00840-7.
This article explores the historical progression of studying neuronal connections, beginning with nineteenth-century advancements in light microscopy and histological techniques. Early methods were limited in terms of their capacity to trace neuronal connections, but a breakthrough came with Camillo Golgi's "black reaction" staining method, later refined and extensively used by Santiago Ramón y Cajal. Cajal's observations supported the Neuron Theory, which proposed that neurons communicate via specialized points of contact, contradicting the prevailing Reticular Theory of a continuous neural network, which was supported by Golgi. This contrast is particularly intriguing because, although Golgi and Cajal used the same black reaction technique and similar microscopes, their interpretations of the microscopic world diverged significantly. An important consequence of the Neuron Theory was Cajal's Law of Dynamic Polarization, which proposed that neurons generally consist of three functionally distinct regions: a receptor apparatus (dendrites and soma), an emission apparatus (axon), and a distribution apparatus (terminal axonal arborization). He applied this principle across various parts of the nervous system and to different neuron types, enabling the generation of the first detailed circuit diagrams of the brain. Cajal's observations, concepts, and theories had a profound impact-not only on researchers of his time, but also on modern neuroscience. This article reflects on the early studies of neuronal connections, highlighting the scientific climate in which Golgi and Cajal initiated their groundbreaking research.
本文探讨了研究神经元连接的历史进程,始于19世纪光学显微镜和组织学技术的进步。早期方法在追踪神经元连接的能力方面存在局限,但卡米洛·高尔基的“黑色反应”染色法带来了突破,该方法后来由圣地亚哥·拉蒙·伊·卡哈尔进行了改进并广泛应用。卡哈尔的观察结果支持了神经元学说,该学说提出神经元通过专门的接触点进行通信,这与当时盛行的、得到高尔基支持的连续神经网络的网状学说相矛盾。这种对比尤其引人入胜,因为尽管高尔基和卡哈尔使用了相同的黑色反应技术和类似的显微镜,但他们对微观世界的解释却大相径庭。神经元学说的一个重要成果是卡哈尔的动态极化定律,该定律提出神经元通常由三个功能不同的区域组成:一个接收装置(树突和胞体)、一个发射装置(轴突)和一个分布装置(轴突终末分支)。他将这一原理应用于神经系统的各个部分以及不同类型的神经元,从而绘制出了首张详细的大脑电路图。卡哈尔的观察结果、概念和理论不仅对他那个时代的研究人员产生了深远影响,也对现代神经科学产生了深远影响。本文回顾了对神经元连接的早期研究,突出了高尔基和卡哈尔开展其开创性研究的科学氛围。