Das Kousik, Chakraborty Subhajit, Kediya Siddhi, Singh Ashutosh Kumar, Das Risov, Mondal Soumi, Riyaz Mohd, Goud Devender, Dutta Nilutpal, Vinod Chathakudath P, Peter Sebastian C
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202423471. doi: 10.1002/anie.202423471. Epub 2025 May 15.
The photochemical conversion of CO into C2+ products has emerged as an attractive method for synthesizing valuable chemicals and fuels using abundant solar energy. However, the challenge lies in enhancing the efficiency and selectivity of C2+ product formation. In this study, we employed a heteroatom doping strategy to optimize the photocatalytic parameters and achieve excellent efficiency and selectivity in the photocatalytic CO reduction to C2+ product formation. Our experimental analysis revealed that the local electronic structure of the catalyst, modified by In-doping, enables enhanced efficiency. Additionally, the incorporation of Cu facilitates the coupling of C1 intermediates, resulting in excellent selectivity towards C2+ products. The CO reduction performance is further enhanced through exfoliation, which increases the exposure of active sites and extends the charge carrier lifetime by reducing the charge diffusion length. We report that the rate of formation of CH reached 54.3 µmol·h·g with an outstanding selectivity of 91% over the exfoliated CuIn-doped AgBiPS catalyst. By elucidating the role of heteroatom doping and exfoliation in enhancing both the efficiency and selectivity of C2+ product formation, our study contributes to advancing the development of sustainable and efficient photocatalytic CO conversion technologies.
将一氧化碳光化学转化为C2+产物已成为一种利用丰富太阳能合成有价值化学品和燃料的有吸引力的方法。然而,挑战在于提高C2+产物形成的效率和选择性。在本研究中,我们采用了杂原子掺杂策略来优化光催化参数,并在光催化CO还原生成C2+产物方面实现了优异的效率和选择性。我们的实验分析表明,通过In掺杂修饰的催化剂的局部电子结构能够提高效率。此外,Cu的引入促进了C1中间体的偶联,从而对C2+产物具有优异的选择性。通过剥离进一步提高了CO还原性能,剥离增加了活性位点的暴露,并通过减小电荷扩散长度延长了电荷载流子寿命。我们报道,在剥离的CuIn掺杂的AgBiPS催化剂上,CH的生成速率达到54.3 µmol·h·g,对C2+产物的选择性高达91%。通过阐明杂原子掺杂和剥离在提高C2+产物形成的效率和选择性方面的作用,我们的研究有助于推动可持续和高效光催化CO转化技术的发展。