Khoury Joe F, Matatyaho Ya'akobi Asia, Chow Alina, Khabushev Eldar, Davidovich Irina, Cavuto Davide, Gong Mingrui, Scammell Lyndsey R, Park Cheol, Talmon Yeshayahu, Martí Angel A, Pasquali Matteo
Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS 369, Houston, Texas 77005, United States.
Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Langmuir. 2025 Jun 24;41(24):15270-15282. doi: 10.1021/acs.langmuir.5c00563. Epub 2025 May 5.
Boron nitride nanotubes (BNNTs) are gaining significant interest due to their outstanding mechanical and thermal properties, as well as their potential to serve as a model nanorod system. Processing BNNT liquid crystalline (LC) dispersions enables precise control over BNNT orientation in macroscopic assemblies, while their low absorption in the visible spectrum facilitates studying LCs at exceptionally high concentrations. Here, we investigate the behavior of BNNTs in aqueous solutions stabilized by the surfactant sodium deoxycholate (SDC), examining the effect of BNNT purity and BNNT-SDC concentrations on lyotropic LC formation. We disperse up to 15 wt % BNNT in SDC solutions and use polarized light microscopy to detail the transition from an isotropic state to a biphasic regime, where isotropic and nematic domains coexist due to phase separation, to a single fully nematic phase. Cryogenic electron microscopy provides direct evidence of BNNT alignment within nematic domains. Our results show that enhanced depletion-induced attractions, driven by increased surfactant concentration, lower the threshold concentration of BNNT required to form nematic domains. In contrast, low surfactant concentrations relative to BNNT result in insufficiently coated nanotube surfaces, leading to poor dispersions and BNNT aggregation. Additionally, we fabricate well-aligned BNNT films from aqueous LC dispersions. Our findings advance the understanding of BNNT LCs, offering insight into controlling their orientation and highlighting their potential for high-performance materials.
氮化硼纳米管(BNNTs)因其出色的机械和热性能以及作为模型纳米棒系统的潜力而备受关注。处理BNNT液晶(LC)分散体能够精确控制宏观组件中BNNT的取向,而它们在可见光谱中的低吸收特性则有助于在极高浓度下研究液晶。在此,我们研究了在由表面活性剂脱氧胆酸钠(SDC)稳定的水溶液中BNNTs的行为,考察了BNNT纯度和BNNT-SDC浓度对溶致液晶形成的影响。我们在SDC溶液中分散了高达15 wt%的BNNT,并使用偏光显微镜详细描述了从各向同性状态到双相区域的转变过程,在双相区域中,由于相分离,各向同性和向列相区域共存,再到单一的完全向列相。低温电子显微镜提供了向列相区域内BNNT排列的直接证据。我们的结果表明,由表面活性剂浓度增加驱动的增强的耗尽诱导吸引力降低了形成向列相区域所需的BNNT阈值浓度。相比之下,相对于BNNT而言低表面活性剂浓度会导致纳米管表面包覆不足,从而导致分散性差和BNNT聚集。此外,我们从水性LC分散体制备了排列良好的BNNT薄膜。我们的研究结果增进了对BNNT液晶的理解,为控制其取向提供了见解,并突出了它们在高性能材料方面的潜力。