VanOrman Zachary A, Cárdenes Wuttig Mateo, Reponen Antti-Pekka M, Kim Taek-Seung, Casaday Claire E, Cui Dongtao, Deshpande Tejas, Jöbsis Huygen J, Schouwink Pascal, Oveisi Emad, Bornet Aurélien, Reece Christian, Feldmann Sascha
Rowland Institute, Harvard University, Cambridge, Massachusetts 02142, United States.
Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
J Am Chem Soc. 2025 May 14;147(19):16536-16544. doi: 10.1021/jacs.5c03629. Epub 2025 May 5.
Halide perovskite nanocrystals are promising materials for optoelectronic applications. Metal doping provides an avenue to boost their performance further, e.g., by enhancing light emission, or to provide additional functionalities, such as nanoscale magnetism and polarization control. However, the synthesis of widely size-tunable nanocrystals with controlled doping levels has been inaccessible using traditional hot injection synthesis, preventing systematic studies on dopant effects toward device applications. Here, we report a versatile synthesis method for metal-doped perovskite nanocrystals with precise control over size and doping concentration under ambient conditions. Our room temperature approach results in fully size-tunable isovalent doping of CsPbX nanocrystals (X = Cl, Br, I) with various transition metals M tested (M = Mn, Ni, Zn). This gives for the first time access to small, yet precisely doped quantum dots beyond the weak confinement regime reported so far. It also enables a comparative study of the photophysics across multiple size and dopant regimes, where we show dopant-induced localization to dominate over quantum confinement effects. This generalizable, facile synthesis method thus provides a toolbox for engineering perovskite nanocrystals toward light-emitting technologies under industrially relevant conditions.
卤化物钙钛矿纳米晶体是用于光电子应用的有前途的材料。金属掺杂提供了进一步提高其性能的途径,例如通过增强发光,或提供额外的功能,如纳米级磁性和偏振控制。然而,使用传统的热注入合成方法无法获得具有可控掺杂水平的广泛尺寸可调的纳米晶体,这阻碍了对掺杂剂对器件应用影响的系统研究。在此,我们报道了一种通用的合成方法,用于在环境条件下精确控制尺寸和掺杂浓度的金属掺杂钙钛矿纳米晶体。我们的室温方法实现了对CsPbX纳米晶体(X = Cl、Br、I)与各种测试的过渡金属M(M = Mn、Ni、Zn)进行完全尺寸可调的等价掺杂。这首次提供了获得迄今为止报道的弱限制区域之外的小尺寸但精确掺杂的量子点的途径。它还能够对多个尺寸和掺杂区域的光物理进行比较研究,我们在其中表明掺杂剂诱导的局域化比量子限制效应更占主导地位。因此,这种可推广的简便合成方法为在工业相关条件下将钙钛矿纳米晶体用于发光技术提供了一个工具箱。