Omole Joseph G, Udom Godswill J, Aturamu Ayodeji, Agbana Richard D, Aziakpono Omoirri Moses, Oritsemuelebi Benjamin, Bukke Sarad Pawar Naik, Okon Idara A, Yemitan Omoniyi K
Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.
Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda.
Indian J Pharmacol. 2025 Jan 1;57(1):33-47. doi: 10.4103/ijp.ijp_934_24. Epub 2025 May 6.
Cardiac glycosides, historically used for managing heart failure and atrial fibrillation, have demonstrated significant pharmacological versatility extending into oncology, virology, and immunotherapy. By targeting Na/K-ATPase, these compounds regulate ionic homeostasis and initiate signalosome formation, influencing key pathways such as MAPK/ERK and PI3K/Akt. Beyond their cardiovascular effects, cardiac glycosides exhibit potent immunomodulatory and senolytic properties, particularly in cancer therapy. They induce immunogenic cell death by releasing damage-associated molecular patterns, which enhance tumor antigen presentation and activate cytotoxic T lymphocytes. In addition, their ability to selectively eliminate senescent tumor cells through Na/K-ATPase inhibition reduces inflammation and improves therapeutic outcomes in synergistic cancer treatments. Furthermore, their antiviral activities have been explored against SARS-CoV-2 and Ebola virus infections, with mechanisms involving the disruption of viral entry, replication, and protein synthesis. Despite their promise, concerns about cardiotoxicity and a narrow therapeutic window persist, necessitating precise dosing and novel derivatives with improved safety profiles. This review consolidates current insights into the mechanisms, therapeutic applications, and limitations of cardiac glycosides, highlighting their potential as a cornerstone for future drug development in oncology and infectious diseases. Advancing pharmacogenomic approaches and clinical trials will further define their role in precision medicine.
强心苷类药物,历史上用于治疗心力衰竭和心房颤动,已显示出显著的药理学多功能性,其应用范围扩展到肿瘤学、病毒学和免疫治疗领域。通过靶向钠钾ATP酶,这些化合物调节离子稳态并启动信号小体形成,影响丝裂原活化蛋白激酶/细胞外信号调节激酶(MAPK/ERK)和磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/Akt)等关键信号通路。除了心血管效应外,强心苷类药物还具有强大的免疫调节和促衰老细胞溶解特性,尤其是在癌症治疗中。它们通过释放损伤相关分子模式诱导免疫原性细胞死亡,从而增强肿瘤抗原呈递并激活细胞毒性T淋巴细胞。此外,它们通过抑制钠钾ATP酶选择性清除衰老肿瘤细胞的能力,可减轻炎症并改善协同癌症治疗的疗效。此外,人们还探索了它们针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和埃博拉病毒感染的抗病毒活性,其作用机制包括干扰病毒进入、复制和蛋白质合成。尽管它们前景广阔,但对心脏毒性和治疗窗狭窄的担忧依然存在,因此需要精确给药以及开发安全性更高的新型衍生物。本综述整合了目前对强心苷类药物作用机制、治疗应用和局限性的认识,强调了它们作为肿瘤学和传染病未来药物开发基石的潜力。推进药物基因组学方法和临床试验将进一步明确它们在精准医学中的作用。