Gu Yuqin, Zheng Hao, Wang Piao, Liu Yanhong, Guo Xinxin, Wei Yuandan, Yang Zijing, Cheng Shiyao, Chen Yanchao, Hu Liang, Chen Xiaohang, Zhang Quanfu, Chen Guobo, Wei Fengxiang, Zhen Jianxin, Liu Siyang
School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, 518102, China.
Nat Commun. 2025 May 5;16(1):4178. doi: 10.1038/s41467-025-59442-6.
Gestational diabetes mellitus, a heritable metabolic disorder and the most common pregnancy-related condition, remains understudied regarding its genetic architecture and its potential for early prediction using genetic data. Here we conducted genome-wide association studies on 116,144 Chinese pregnancies, leveraging their non-invasive prenatal test sequencing data and detailed prenatal records. We identified 13 novel loci for gestational diabetes mellitus and 111 for five glycemic traits, with minor allele frequencies of 0.01-0.5 and absolute effect sizes of 0.03-0.62. Approximately 50% of these loci were specific to gestational diabetes mellitus and gestational glycemic levels, distinct from type 2 diabetes and general glycemic levels in East Asians. A machine learning model integrating polygenic risk scores and prenatal records predicted gestational diabetes mellitus before 20 weeks of gestation, achieving an area under the receiver operating characteristic curve of 0.729 and an accuracy of 0.835. Shapley values highlighted polygenic risk scores as key contributors. This model offers a cost-effective strategy for early gestational diabetes mellitus prediction using clinical non-invasive prenatal test.
妊娠期糖尿病是一种遗传性代谢紊乱疾病,也是最常见的妊娠相关病症,但其遗传结构以及利用遗传数据进行早期预测的潜力仍未得到充分研究。在此,我们利用116,144例中国孕妇的无创产前检测测序数据和详细的产前记录,开展了全基因组关联研究。我们识别出了13个妊娠期糖尿病新位点以及111个与五种血糖性状相关的位点,其小等位基因频率为0.01 - 0.5,绝对效应大小为0.03 - 0.62。这些位点中约50%是妊娠期糖尿病和妊娠血糖水平所特有的,与东亚人群的2型糖尿病和一般血糖水平不同。一个整合多基因风险评分和产前记录的机器学习模型在妊娠20周前就能预测妊娠期糖尿病,受试者工作特征曲线下面积达到0.729,准确率为0.835。夏普利值突出了多基因风险评分是关键因素。该模型为利用临床无创产前检测进行妊娠期糖尿病早期预测提供了一种经济有效的策略。