Khosrowshahi Hossein Najafi, Aghdasi Hadi S, Salehpour Pedram
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
Sci Rep. 2025 May 6;15(1):15729. doi: 10.1038/s41598-025-00796-8.
The growth of the Internet of Things (IoT) has intensified the need for efficient service placement in edge computing environments. This problem remains challenging due to dynamic workloads and heterogeneous resources. Existing swarm intelligence algorithms, such as QPSO-SP and WOA-FSP, often struggle to balance exploration and exploitation effectively. We propose the Modified Greylag Goose Optimization (MGGO) algorithm, which introduces adaptive mechanisms for dynamic population partitioning, stagnation detection, and learning-based control. MGGO optimizes key performance metrics, including energy consumption, latency, throughput, and load balancing. Experimental evaluations on synthetic service placement workloads show that MGGO achieves 12-15% improvement over GGO, QPSO-SP, BOA, and WOA-FSP across all metrics. These findings demonstrate MGGO's potential for improving edge service placement in dynamic environments.
物联网(IoT)的发展加剧了在边缘计算环境中进行高效服务部署的需求。由于动态工作负载和异构资源,这个问题仍然具有挑战性。现有的群体智能算法,如QPSO-SP和WOA-FSP,往往难以有效地平衡探索和利用。我们提出了改进的灰雁优化(MGGO)算法,该算法引入了用于动态种群划分、停滞检测和基于学习的控制的自适应机制。MGGO优化了关键性能指标,包括能耗、延迟、吞吐量和负载平衡。对合成服务部署工作负载的实验评估表明,在所有指标上,MGGO比GGO、QPSO-SP、BOA和WOA-FSP提高了12-15%。这些发现证明了MGGO在动态环境中改善边缘服务部署的潜力。