Qin Yi, Chen Junyan, Jin Lei, Yao Rui, Gong Zidan
School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
Sci Rep. 2025 Jan 2;15(1):211. doi: 10.1038/s41598-024-84038-3.
Mobile edge computing offloads compute-intensive tasks generated on mobile wireless devices (WD) to edge servers (ES), which provides mobile users with low-latency computing services. Opportunistic computing offloading is effective to enhance computing performance in dynamic edge network environments; however, careless offloading of tasks to ESs can lead to WDs preempting network computing resources with limited bandwidth, thereby resulting in inefficient allocation of computing resources. To address these challenges, this paper proposes the density clustering and ensemble learning training-based deep reinforcement learning (DCEDRL) method for task offloading decision-making in mobile edge computing (MEC). Firstly, DCEDRL utilizes multiple deep neural networks to explore the environment. It trains multiple models using ensemble learning methods to obtain a combination of prediction results. Secondly, DCEDRL utilizes an optimized density clustering method to identify and classify computing tasks with similar characteristics to improve subsequent task scheduling and resource allocation efficiency. Finally, according to the stored priority information, DCEDRL utilizes the priority weight to resample the samples, adjust the sampling strategy in real time, and improve the adaptability and robustness of the system. Simulation results demonstrate that the proposed DCEDRL method can reduce the backlog of tasks by greater than over 21% compared to the baseline algorithms.
移动边缘计算将移动无线设备(WD)上生成的计算密集型任务卸载到边缘服务器(ES),这为移动用户提供了低延迟计算服务。机会计算卸载对于增强动态边缘网络环境中的计算性能是有效的;然而,将任务不小心卸载到边缘服务器可能会导致移动无线设备抢占带宽有限的网络计算资源,从而导致计算资源分配效率低下。为应对这些挑战,本文提出了基于密度聚类和集成学习训练的深度强化学习(DCEDRL)方法,用于移动边缘计算(MEC)中的任务卸载决策。首先,DCEDRL利用多个深度神经网络探索环境。它使用集成学习方法训练多个模型,以获得预测结果的组合。其次,DCEDRL利用优化的密度聚类方法识别和分类具有相似特征的计算任务,以提高后续任务调度和资源分配效率。最后,根据存储的优先级信息,DCEDRL利用优先级权重对样本进行重新采样,实时调整采样策略,并提高系统的适应性和鲁棒性。仿真结果表明,与基线算法相比,所提出的DCEDRL方法可以将任务积压减少超过21%。