Suppr超能文献

基于进化博弈论的新型灰雁优化算法(EGGO)

Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO).

作者信息

Wang Lei, Yao Yuqi, Yang Yuanting, Zang Zihao, Zhang Xinming, Zhang Yiwen, Yu Zhenglei

机构信息

School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.

School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China.

出版信息

Biomimetics (Basel). 2025 Aug 19;10(8):545. doi: 10.3390/biomimetics10080545.

Abstract

In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.

摘要

本文提出了一种基于进化博弈论的增强灰雁优化算法(EGGO),以解决传统灰雁优化算法(GGO)在全局搜索能力和收敛速度方面的局限性。通过引入进化博弈论中的动态策略调整,EGGO提高了全局搜索效率和收敛速度。此外,EGGO采用动态分组、随机变异和局部搜索增强来提高效率和鲁棒性。在标准测试函数和CEC 2022基准测试集上的实验比较表明,EGGO在收敛精度和速度方面优于其他经典算法和变体。通过在工程设计中的应用,如拉伸/压缩弹簧、齿轮系和三杆桁架的设计,也证明了EGGO在实际优化问题中的有效性。EGGO为优化问题提供了一种新颖的解决方案,并为群体智能算法提供了新的理论基础和研究框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e862/12383611/400253bd5f59/biomimetics-10-00545-g001.jpg

相似文献

1
Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO).
Biomimetics (Basel). 2025 Aug 19;10(8):545. doi: 10.3390/biomimetics10080545.
2
Augmented secretary bird optimization algorithm for wireless sensor network deployment and engineering problem.
PLoS One. 2025 Aug 8;20(8):e0329705. doi: 10.1371/journal.pone.0329705. eCollection 2025.
3
Hybrid greylag goose and particle swarm optimization for early detection of Parkinson's disease from speech features.
Comput Biol Med. 2025 Oct;197(Pt A):110924. doi: 10.1016/j.compbiomed.2025.110924. Epub 2025 Aug 28.
4
GWOA: A multi-strategy enhanced whale optimization algorithm for engineering design optimization.
PLoS One. 2025 Sep 3;20(9):e0322494. doi: 10.1371/journal.pone.0322494. eCollection 2025.
6
Coverage optimization of wireless sensor network utilizing an improved CS with multi-strategies.
Sci Rep. 2025 Aug 13;15(1):29668. doi: 10.1038/s41598-025-13247-1.
7
Chaotic RIME optimization algorithm with adaptive mutualism for feature selection problems.
Comput Biol Med. 2024 Sep;179:108803. doi: 10.1016/j.compbiomed.2024.108803. Epub 2024 Jul 1.

本文引用的文献

3
A Multi-Strategy Improvement Secretary Bird Optimization Algorithm for Engineering Optimization Problems.
Biomimetics (Basel). 2024 Aug 8;9(8):478. doi: 10.3390/biomimetics9080478.
4
A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications.
Biomimetics (Basel). 2024 Jul 7;9(7):417. doi: 10.3390/biomimetics9070417.
6
Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot.
Comput Intell Neurosci. 2022 Sep 27;2022:5191758. doi: 10.1155/2022/5191758. eCollection 2022.
7
Ant algorithms for discrete optimization.
Artif Life. 1999 Spring;5(2):137-72. doi: 10.1162/106454699568728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验