Scardino Valeria, Di Filippo Juan I, Cavasotto Claudio N
Meton AI, Inc, Wilmington, DE 19801, USA.
Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
iScience. 2022 Dec 30;26(1):105920. doi: 10.1016/j.isci.2022.105920. eCollection 2023 Jan 20.
A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success.
基于结构的药物发现中的一个关键组成部分是蛋白质靶点高质量三维结构的可用性。每当无法获得实验结构时,到目前为止,同源建模一直是首选方法。最近,基于人工智能的蛋白质结构预测方法AlphaFold(AF)在模型准确性方面取得了令人瞩目的成果。这一卓越的成功促使我们从基于对接的药物发现角度评估AF模型的准确性。我们使用一组包含22个靶点的基准数据集,比较了AF模型及其相应的实验PDB结构的高通量对接(HTD)性能。使用四个对接程序和两种一致性技术时,AF模型的表现始终较差。尽管AlphaFold在预测蛋白质结构方面表现出非凡的能力,但这可能不足以保证AF模型能够可靠地用于高通量对接,建模后的优化策略可能是提高成功几率的关键。