Oliver Thomas J, Elias Eduard, Croce Roberta
Department of Physics and Astronomy, Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, de Boelelaan 1100, Amsterdam, HZ, 1081, the Netherlands.
New Phytol. 2025 Jul;247(1):128-143. doi: 10.1111/nph.70188. Epub 2025 May 5.
The Chl d-containing cyanobacterium, Acaryochloris marina MBIC11017, is constitutively adapted to far-red light (FRL). However, it occasionally encounters white light (WL) in its natural habitat. Using biochemical and spectroscopic techniques, we investigated how this organism acclimates to WL and analysed the excitation energy trapping dynamics of its photosystems and complex antenna system, comprised of both membrane-embedded and soluble antenna. When grown in WL, A. marina MBIC11017 doubles its Photosystem I/Photosystem II (PSI/PSII) ratio and increases its phycobilisome content compared with FRL, without altering their composition, while the number of membrane-embedded antennae decreases. Under both light conditions, phycobilisomes primarily transfer excitation energy to PSII, but a smaller fraction transfers to PSI. The PSI trapping time is fast (35 ps), confirming the absence of red-shifted forms. By contrast, PSII trapping is slower, with two components of c. 115 and c. 480 ps. Simulations based on the PSII structure suggest that this slow trapping arises mainly from the PSII antenna arrangement rather than from the use of Chld as a primary donor. These results reveal how A. marina MBIC11017 dynamically adjusts photosystem ratios and antenna composition to changes in light quality, offering insights into the ecological and functional implications of Chld-driven photosynthesis and chromatic acclimation.
含叶绿素d的蓝细菌——滨海栖热放线菌MBIC11017,一直适应远红光(FRL)。然而,它在自然栖息地偶尔会遇到白光(WL)。我们使用生化和光谱技术,研究了这种生物体如何适应白光,并分析了其光系统和由膜嵌入型和可溶性天线组成的复合天线系统的激发能捕获动力学。与在远红光下生长相比,滨海栖热放线菌MBIC11017在白光下生长时,其光系统I/光系统II(PSI/PSII)的比例增加了一倍,藻胆体含量增加,但其组成没有改变,而膜嵌入型天线的数量减少。在两种光照条件下,藻胆体主要将激发能转移到PSII,但有一小部分转移到PSI。PSI的捕获时间很快(35 ps),证实不存在红移形式。相比之下,PSII的捕获较慢,有两个约115和480 ps的成分。基于PSII结构的模拟表明,这种缓慢捕获主要源于PSII天线排列,而不是由于使用叶绿素d作为主要供体。这些结果揭示了滨海栖热放线菌MBIC11017如何动态调整光系统比例和天线组成以适应光质变化,为叶绿素d驱动的光合作用和色适应的生态和功能意义提供了见解。