Department of Life Sciences, Imperial College London, London, United Kingdom.
Photosyntesis Research Unit, Consiglio Nazionale delle Ricerche, Milan, Italy.
Elife. 2022 Jul 19;11:e79890. doi: 10.7554/eLife.79890.
Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from has Chl-d replacing all but one of its 35 Chl-a, while PSII from , a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PPhe repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and Q and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties.
光系统 II(PSII)利用红光的能量分解水并还原醌,这是一个依赖于叶绿素 a(Chl-a)光化学的能量消耗过程。两种类型的蓝藻 PSII 可以利用叶绿素 d(Chl-d)和叶绿素 f(Chl-f)利用低能量的远红光进行相同的反应。来自 的 PSII 用 Chl-d 取代了其 35 个 Chl-a 中的除一个之外的所有 Chl-a,而来自 的 PSII 是一种兼性远红种,只有 4 个 Chl-f 和 1 个 Chl-d 和 30 个 Chl-a。从生物能量学的角度来看,远红 PSII 预计会失去光化学效率和/或对光损伤的恢复能力。在这里,我们比较了 Chl-f-PSII、Chl-d-PSII 和 Chl-a-PSII 中的酶周转率效率、向前电子转移、反向反应和光损伤。我们表明:(i)所有类型的 PSII 在酶周转率方面效率相当;(ii)Chl-d-PSII 受体侧的修饰能隙有利于通过 PPhe 再填充进行重组,导致单线态氧产生增加和对高光损伤的敏感性增加,与 Chl-a-PSII 和 Chl-f-PSII 相比;(iii)Chl-f-PSII 受体侧的能隙被调谐以避免有害的反向反应,有利于光损伤的恢复能力而不是光利用效率。这些结果可以通过电子转移辅助因子 Phe 和 Q 的氧化还原调谐以及与初级电子供体共享激发能的叶绿素的数量和布局的差异来解释。PSII 以两种截然不同的方式适应了低能量,每种方式都适合其特定的环境,但功能代价不同。