Zhang Hanfu, Yu Yizhi, Qian Cheng
National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia.
Immun Inflamm Dis. 2025 May;13(5):e70200. doi: 10.1002/iid3.70200.
Recent advances in immunotherapy have spotlighted macrophages as central mediators of disease treatment. Their polarization into pro‑inflammatory (M1) or anti‑inflammatory (M2) states critically influences outcomes in cancer, autoimmunity, and chronic inflammation. Oligonucleotides have emerged as highly specific, scalable, and cost‑effective agents for reprogramming macrophage phenotypes.
To review oligonucleotide strategies-including ASOs, siRNAs, miRNA mimics/inhibitors, and aptamers-for directing macrophage polarization and their therapeutic implications.
We examine key signaling pathways governing M1/M2 phenotypes, describe four classes of oligonucleotides and their mechanisms, and highlight representative preclinical and clinical applications.
Agents such as AZD9150, MRX34, and AS1411 demonstrate macrophage reprogramming in cancer, inflammation, and infection models. Advances in ligand‑conjugated nanoparticles and chemical modifications improve delivery and stability, yet immunogenicity, off‑target effects, and formulation challenges remain significant barriers.
Optimizing delivery platforms, enhancing molecular stability, and rigorous safety profiling are critical. Integration with emerging modalities-such as engineered CAR‑macrophages-will enable precise, disease‑specific interventions, and advance oligonucleotide‑guided macrophage modulation toward clinical translation.
免疫疗法的最新进展使巨噬细胞成为疾病治疗的核心介质。它们极化为促炎(M1)或抗炎(M2)状态对癌症、自身免疫和慢性炎症的治疗结果有着至关重要的影响。寡核苷酸已成为用于重编程巨噬细胞表型的高度特异性、可扩展且具有成本效益的试剂。
综述用于指导巨噬细胞极化的寡核苷酸策略,包括反义寡核苷酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)模拟物/抑制剂和适配体及其治疗意义。
我们研究了控制M1/M2表型的关键信号通路,描述了四类寡核苷酸及其作用机制,并重点介绍了具有代表性的临床前和临床应用。
诸如AZD9150、MRX34和AS1411等试剂在癌症、炎症和感染模型中显示出巨噬细胞重编程作用。配体偶联纳米颗粒和化学修饰方面的进展改善了递送和稳定性,但免疫原性、脱靶效应和制剂挑战仍然是重大障碍。
优化递送平台、提高分子稳定性和进行严格的安全性分析至关重要。与新兴模式(如工程化嵌合抗原受体巨噬细胞)相结合将实现精确的、针对疾病的干预,并推动寡核苷酸引导的巨噬细胞调节走向临床转化。