Hau Han-Ming, Holstun Tucker, Lee Eunryeol, Rinkel Bernardine L D, Mishra Tara P, Markuson DiPrince Max, Mohanakrishnan Rohith Srinivaas, Self Ethan C, Persson Kristin A, McCloskey Bryan D, Ceder Gerbrand
Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Adv Mater. 2025 May 6:e2502766. doi: 10.1002/adma.202502766.
To address the growing demand for energy and support the shift toward transportation electrification and intermittent renewable energy, there is an urgent need for low-cost, energy-dense electrical storage. Research on Li-ion electrode materials has predominantly focused on ordered materials with well-defined lithium diffusion channels, limiting cathode design to resource-constrained Ni- and Co-based oxides and lower-energy polyanion compounds. Recently, disordered rocksalts with lithium excess (DRX) have demonstrated high capacity and energy density when lithium excess and/or local ordering allow statistical percolation of lithium sites through the structure. This cation disorder can be induced by high temperature synthesis or mechanochemical synthesis methods for a broad range of compositions. DRX oxides and oxyfluorides containing Earth-abundant transition metals have been prepared using various synthesis routes, including solid-state, molten-salt, and sol-gel reactions. This review outlines DRX design principles and explains the effect of synthesis conditions on cation disorder and short-range cation ordering (SRO), which determines the cycling stability and rate capability. In addition, strategies to enhance Li transport and capacity retention with Mn-rich DRX possessing partial spinel-like ordering are discussed. Finally, the review considers the optimization of carbon and electrolyte in DRX materials and addresses key challenges and opportunities for commercializing DRX cathodes.
为了满足对能源日益增长的需求,并支持向交通运输电气化和间歇性可再生能源的转变,迫切需要低成本、高能量密度的蓄电技术。锂离子电极材料的研究主要集中在具有明确锂扩散通道的有序材料上,这将阴极设计限制在资源有限的镍基和钴基氧化物以及能量较低的聚阴离子化合物上。最近,当锂过量和/或局部有序化允许锂位点通过结构进行统计渗流时,锂过量的无序岩盐(DRX)已显示出高容量和高能量密度。这种阳离子无序可以通过高温合成或机械化学合成方法在广泛的成分中诱导产生。含有储量丰富的过渡金属的DRX氧化物和氧氟化物已通过各种合成路线制备,包括固态、熔盐和溶胶-凝胶反应。本综述概述了DRX的设计原则,并解释了合成条件对阳离子无序和短程阳离子有序(SRO)的影响,而这决定了循环稳定性和倍率性能。此外,还讨论了利用具有部分尖晶石状有序结构的富锰DRX增强锂传输和容量保持的策略。最后,本综述考虑了DRX材料中碳和电解质的优化,并探讨了DRX阴极商业化的关键挑战和机遇。