Suppr超能文献

加速富锰岩盐阴极中δ相的电化学形成

Accelerating the Electrochemical Formation of the δ Phase in Manganese-Rich Rocksalt Cathodes.

作者信息

Holstun Tucker, Mishra Tara P, Huang Liliang, Hau Han-Ming, Anand Shashwat, Yang Xiaochen, Ophus Colin, Bustillo Karen, Ma Lu, Ehrlich Steven, Ceder Gerbrand

机构信息

Department of Material Science and Engineering, University of California, Berkeley, CA, 94706, USA.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

出版信息

Adv Mater. 2025 Feb;37(6):e2412871. doi: 10.1002/adma.202412871. Epub 2024 Dec 23.

Abstract

Mn-rich disordered rocksalt materials with Li-excess (DRX) materials have emerged as a promising class of earth-abundant and energy-dense next-generation cathode materials for lithium-ion batteries. Recently, an electrochemical transformation to a spinel-like "δ" phase has been reported in Mn-rich DRX materials, with improved capacity, rate capability, and cycling stability compared with previous DRX compositions. However, this transformation unfolds slowly over the course of cycling, complicating the development and understanding of these materials. In this work, it is reported that the transformation of Mn-rich DRX materials to the promising δ phase can be promoted to occur much more rapidly by electrochemical pulsing at elevated temperature, rate, and voltage. To extend this concept, micron-sized single-crystal DRX particles are also transformed to the δ phase by the same method, possessing greatly improved cycling stability in the first demonstration of cycling for large, single-crystal DRX particles. To shed light on the formation and specific structure of the δ phase, X-ray diffraction, scanning electron nanodiffraction (SEND) and atomic resolution STEM-HAADF are used to reveal a nanodomain spinel structure with minimal remnant disorder.

摘要

富锰无序岩盐锂过量(DRX)材料已成为一类有前景的、储量丰富且能量密度高的下一代锂离子电池正极材料。最近,据报道富锰DRX材料会发生电化学转变为类尖晶石“δ”相,与之前的DRX成分相比,其容量、倍率性能和循环稳定性都有所提高。然而,这种转变在循环过程中进展缓慢,这使得这些材料的开发和理解变得复杂。在这项工作中,据报道,通过在升高的温度、倍率和电压下进行电化学脉冲,可以促进富锰DRX材料向有前景的δ相转变,使其发生得更快。为了扩展这一概念,微米级单晶DRX颗粒也通过相同的方法转变为δ相,在首次对大尺寸单晶DRX颗粒进行循环测试时,其循环稳定性有了极大提高。为了阐明δ相的形成和具体结构,使用X射线衍射、扫描电子纳米衍射(SEND)和原子分辨率STEM-HAADF来揭示具有最小残余无序的纳米域尖晶石结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c49/11817910/166de08559f4/ADMA-37-2412871-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验