Ost David E
Professor of Medicine, MD Anderson Cancer Center, 1400 Pressler St., Unit 1462 FCT12.5099, Houston, Texas, USA.
Curr Opin Pulm Med. 2025 Jul 1;31(4):344-351. doi: 10.1097/MCP.0000000000001179. Epub 2025 May 5.
This review evaluates the role of artificial intelligence (AI) in diagnosing solitary pulmonary nodules (SPNs), focusing on clinical applications and limitations in pulmonary medicine. It explores AI's utility in imaging and blood/tissue-based diagnostics, emphasizing practical challenges over technical details of deep learning methods.
AI enhances computed tomography (CT)-based computer-aided diagnosis (CAD) through steps like nodule detection, false positive reduction, segmentation, and classification, leveraging convolutional neural networks and machine learning. Segmentation achieves Dice similarity coefficients of 0.70-0.92, while malignancy classification yields areas under the curve of 0.86-0.97. AI-driven blood tests, incorporating RNA sequencing and clinical data, report AUCs up to 0.907 for distinguishing benign from malignant nodules. However, most models lack prospective, multiinstitutional validation, risking overfitting and limited generalizability. The "black box" nature of AI, coupled with overlapping inputs (e.g., nodule size, smoking history) with physician assessments, complicates integration into clinical workflows and precludes standard Bayesian analysis.
AI shows promise for SPN diagnosis but requires rigorous validation in diverse populations and better clinician training for effective use. Rather than replacing judgment, AI should serve as a second opinion, with its reported performance metrics understood as study-specific, not directly applicable at the bedside due to double-counting issues.
本综述评估人工智能(AI)在孤立性肺结节(SPN)诊断中的作用,重点关注其在肺部医学中的临床应用和局限性。探讨AI在基于影像以及血液/组织的诊断中的效用,强调实际面临的挑战,而非深度学习方法的技术细节。
AI通过利用卷积神经网络和机器学习,在结节检测、减少假阳性、分割和分类等步骤中增强基于计算机断层扫描(CT)的计算机辅助诊断(CAD)。分割的Dice相似系数达到0.70 - 0.92,而恶性分类的曲线下面积为0.86 - 0.97。结合RNA测序和临床数据的AI驱动的血液检测,在区分良性和恶性结节方面的曲线下面积高达0.907。然而,大多数模型缺乏前瞻性、多机构验证,存在过度拟合和泛化性有限的风险。AI的“黑箱”性质,加上与医生评估存在重叠的输入(如结节大小、吸烟史),使得其融入临床工作流程变得复杂,并且排除了标准的贝叶斯分析。
AI在SPN诊断方面显示出前景,但需要在不同人群中进行严格验证,并对临床医生进行更好的培训以实现有效应用。AI不应取代判断,而应作为第二种观点,其报告的性能指标应理解为特定研究的,由于重复计算问题,不能直接应用于床边诊断。