Suppr超能文献

一种基于重复动作电位的自适应分割方案用于表面肌电控制的运动解码。

An adaptive segmentation scheme based on recurring action potentials for sEMG controlled movement decoding.

作者信息

Sharma Anil, Shrivas Nikhil Vivek, Sharma Ila

机构信息

Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, India.

Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, India.

出版信息

Phys Eng Sci Med. 2025 May 6. doi: 10.1007/s13246-025-01557-7.

Abstract

An electromyography (EMG) controlled decoding system requires signal pre-processing, feature extraction, and classification as fundamental steps and requires high accuracy and minimum delay. The conventional system relies on the constant width segmentation scheme for feature extraction, which does not cover the complexities associated with the random behavior of EMG signals. An adaptive segmentation based on the repeating patterns of action potentials can be a promising solution. This work proposes a novel adaptive segmentation approach that captures the occurrence of these action potentials for segmentation and feature extraction. The proposed work is validated experimentally with 12 subjects performing eight different movements. Twenty-time domain features are extracted to verify the study. Linear Discriminant Analysis (LDA), k-nearest neighbor (kNN), and Decision Tree (DT) classifiers are used to observe the performance of the proposed scheme in terms of precision, recall, F1 score, and accuracy. The proposed method gives an average segmentation width of 124 ms across all subjects with 124 ± 5.4 (± 4.35 %) margin of error at 95 % confidence level. The average F1 score across all subjects for eight movements is 82.078 % for LDA, 81.51 % for kNN, and 80.81 % for DT classifiers. The 5-fold cross-validated accuracies for LDA, kNN, and DT classifiers are 78.3 %, 78.2 %, and 76.70 %, respectively. The calculated accuracies are compared with a constant width segmentation scheme with a window size of 200 ms. The t-test suggests significant improvement in the performance of the classifiers with the proposed method.

摘要

肌电图(EMG)控制的解码系统需要信号预处理、特征提取和分类作为基本步骤,并且需要高精度和最小延迟。传统系统依靠固定宽度分割方案进行特征提取,该方案无法涵盖与EMG信号随机行为相关的复杂性。基于动作电位重复模式的自适应分割可能是一个有前景的解决方案。这项工作提出了一种新颖的自适应分割方法,该方法捕捉这些动作电位的出现以进行分割和特征提取。所提出的工作通过12名受试者执行八种不同动作进行了实验验证。提取了二十个时域特征以验证该研究。使用线性判别分析(LDA)、k近邻(kNN)和决策树(DT)分类器来观察所提出方案在精度、召回率、F1分数和准确率方面的性能。所提出的方法在所有受试者中给出的平均分割宽度为124毫秒,在95%置信水平下误差幅度为124±5.4(±4.35%)。对于八种动作,所有受试者的LDA平均F1分数为82.078%,kNN为81.51%,DT分类器为80.81%。LDA、kNN和DT分类器的5折交叉验证准确率分别为78.3%、78.2%和76.70%。将计算出的准确率与窗口大小为200毫秒的固定宽度分割方案进行比较。t检验表明,所提出的方法在分类器性能方面有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验