Vujic Ana, Koo Amy, Bidault Guillaume, Miljkovic Jan Lj, James Andrew M, Dannhorn Andreas, Duan Xiaowen, Davis Lucy M, Abe Jiro, Valadares Joyce, Lee Jordan J, Diaz-Vegas Alexis, Turner Keira, Goodwin Richard, Fazakerley Daniel J, Vidal-Puig Antonio, Murphy Michael P, Krieg Thomas
Department of Medicine, University of Cambridge, Cambridge, United Kingdom.
Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom.
Am J Physiol Heart Circ Physiol. 2025 Jul 1;329(1):H154-H168. doi: 10.1152/ajpheart.00482.2024. Epub 2025 May 6.
Central to the development of heart failure with preserved ejection fraction (HFpEF) is the redox disruption of metabolic processes; however, the underlying mechanisms are not fully understood. This study utilized a murine model (ND6) carrying a homoplasmic mitochondrial DNA point mutation (), which maintains functional NADH oxidation but lacks the site-specific reactive oxygen species (ROS) generation via reverse electron transport (RET). We demonstrate that mice with RET-ROS deficiency have reduced exercise capacity despite higher lean body mass, impaired resilience to high-fat/high-sucrose dietary stress, and cardiac hypertrophy with diastolic dysfunction. Importantly, dobutamine-induced stress elevated succinate levels in the heart, accompanied by RET-ROS production in wild-type but not in ND6 mice. Furthermore, ND6 mice showed perturbation in metabolite profiles following dobutamine stress. Mechanistically, the ND6 heart had an upregulated expression of fatty acid transport, oxidation, and synthesis genes (, , , , , and ) and increased protein levels of lipid metabolism regulators (acetyl-CoA carboxylase and perilipin 2). Interestingly, 8 wk of forced treadmill running increased acetyl-CoA abundance, alleviated metabolic stress, and improved diastolic function in RET-ROS mutant hearts. In summary, these findings reveal a critical role for RET-ROS in regulating exercise capacity and cardiometabolic health, identifying it as a potentially selective target for modulating cardiac metabolism. Loss of reverse electron transport (RET)-reactive oxygen species (ROS) impairs diastolic function and exercise capacity, which can be improved by long-term aerobic exercise. RET-ROS may act as a modulator of cardiac metabolism.
射血分数保留的心力衰竭(HFpEF)发展的核心是代谢过程的氧化还原破坏;然而,其潜在机制尚未完全了解。本研究利用了一种携带纯质线粒体DNA点突变的小鼠模型(ND6),该模型维持功能性NADH氧化,但缺乏通过逆向电子传递(RET)产生位点特异性活性氧(ROS)的能力。我们证明,尽管瘦体重较高,但RET-ROS缺乏的小鼠运动能力下降,对高脂/高糖饮食应激的恢复力受损,并且出现心脏肥大伴舒张功能障碍。重要的是,多巴酚丁胺诱导的应激使心脏中的琥珀酸水平升高,野生型小鼠中伴有RET-ROS产生,而ND6小鼠中则没有。此外,ND6小鼠在多巴酚丁胺应激后代谢物谱出现紊乱。从机制上讲,ND6心脏中脂肪酸转运、氧化和合成基因( 、 、 、 、 和 )的表达上调,脂质代谢调节因子(乙酰辅酶A羧化酶和脂滴包被蛋白2)的蛋白质水平增加。有趣的是,8周的强制跑步机跑步增加了乙酰辅酶A的丰度,减轻了代谢应激,并改善了RET-ROS突变心脏的舒张功能。总之,这些发现揭示了RET-ROS在调节运动能力和心脏代谢健康方面起着关键作用,将其确定为调节心脏代谢的潜在选择性靶点。逆向电子传递(RET)-活性氧(ROS)的缺失会损害舒张功能和运动能力,长期有氧运动可改善这种情况。RET-ROS可能作为心脏代谢的调节因子。