Miháliková Ivana, Krejčí Michal, Friák Martin
Institute of Physics of Materials, Czech Academy of Sciences, 616 00, Brno, Czech Republic.
Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic.
Sci Rep. 2025 May 6;15(1):15746. doi: 10.1038/s41598-025-00151-x.
Variational Quantum Algorithms (VQAs) provide a promising framework for solving electronic structure problems using the computational capabilities of quantum computers to explore high-dimensional Hilbert spaces efficiently. This research investigates the performance of VQAs in electronic structure calculations of gallium arsenide (GaAs), a semiconductor with a zinc-blende structure. Utilizing a tight-binding Hamiltonian and a Jordan-Wigner-like transformation, we map the problem to a 10-qubit Hamiltonian. We analyze the impact of quantum circuit architectures, algorithm hyperparameters, and optimization methods on two VQAs: Variational Quantum Deflation (VQD) and Subspace Search Variational Quantum Eigensolver (SSVQE). We observed that while both algorithms offer promising results, the choice of ansatz and hyperparameter tuning were especially critical in achieving reliable outcomes, particularly for higher energy states. Adjusting the hyperparameters in VQD significantly enhanced the accuracy of higher energy state calculations, reducing the error by an order of magnitude, whereas tuning the hyperparameters in SSVQE had minimal impact. Our findings provide insights into optimizing VQAs for electronic structure problems, paving the way for their application to more complex systems on near-term quantum devices.
变分量子算法(VQAs)提供了一个很有前景的框架,可利用量子计算机的计算能力来有效探索高维希尔伯特空间,从而解决电子结构问题。本研究调查了VQAs在具有闪锌矿结构的半导体砷化镓(GaAs)的电子结构计算中的性能。利用紧束缚哈密顿量和类约旦 - 维格纳变换,我们将该问题映射到一个10量子比特的哈密顿量。我们分析了量子电路架构、算法超参数和优化方法对两种VQAs的影响:变分量子消去法(VQD)和子空间搜索变分量子本征求解器(SSVQE)。我们观察到,虽然这两种算法都给出了很有前景的结果,但在获得可靠结果时,尤其是对于高能态,选择近似解和超参数调整尤为关键。调整VQD中的超参数显著提高了高能态计算的准确性,将误差降低了一个数量级,而调整SSVQE中的超参数影响极小。我们的研究结果为优化用于电子结构问题的VQAs提供了见解,为其在近期量子设备上应用于更复杂系统铺平了道路。