Liu Xiong Xiong, Pan Long, Zhang Haotian, Liu Cancan, Cao Mufan, Gao Min, Zhang Yuan, Xu Zeyuan, Wang Yaping, Sun ZhengMing
School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
Nanomicro Lett. 2025 May 7;17(1):249. doi: 10.1007/s40820-025-01760-x.
Fluoropolymers promise all-solid-state lithium metal batteries (ASLMBs) but suffer from two critical challenges. The first is the trade-off between ionic conductivity (σ) and lithium anode reactions, closely related to high-content residual solvents. The second, usually consciously overlooked, is the fluoropolymer's inherent instability against alkaline lithium anodes. Here, we propose indium-based metal-organic frameworks (In-MOFs) as a multifunctional promoter to simultaneously address these two challenges, using poly(vinylidene fluoride-hexafluoropropylene) (PVH) as the typical fluoropolymer. In-MOF plays a trio: (1) adsorbing and converting free residual solvents into bonded states to prevent their side reactions with lithium anodes while retaining their advantages on Li transport; (2) forming inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growth; (3) reducing PVH crystallinity and promoting Li-salt dissociation. Therefore, the resulting PVH/In-MOF (PVH-IM) showcases excellent electrochemical stability against lithium anodes, delivering a 5550 h cycling at 0.2 mA cm with a remarkable cumulative lithium deposition capacity of 1110 mAh cm. It also exhibits an ultrahigh σ of 1.23 × 10 S cm at 25 °C. Moreover, all-solid-state LiFePO|PVH-IM|Li full cells show outstanding rate capability and cyclability (80.0% capacity retention after 280 cycles at 0.5C), demonstrating high potential for practical ASLMBs.
含氟聚合物有望应用于全固态锂金属电池(ASLMBs),但面临两个关键挑战。第一个挑战是离子电导率(σ)与锂负极反应之间的权衡,这与高含量的残留溶剂密切相关。第二个挑战通常被有意忽视,即含氟聚合物对碱性锂负极具有固有的不稳定性。在此,我们提出以铟基金属有机框架(In-MOFs)作为多功能促进剂,以同时应对这两个挑战,使用聚(偏二氟乙烯-六氟丙烯)(PVH)作为典型的含氟聚合物。In-MOF发挥三重作用:(1)吸附并将游离的残留溶剂转化为键合状态,以防止它们与锂负极发生副反应,同时保留其在锂传输方面的优势;(2)形成富含无机成分的固体电解质界面层,以防止PVH与锂负极反应,并促进锂的均匀沉积而不产生枝晶生长;(3)降低PVH的结晶度并促进锂盐解离。因此,所得的PVH/In-MOF(PVH-IM)对锂负极表现出优异的电化学稳定性,在0.2 mA cm下循环5550小时,累积锂沉积容量达到1110 mAh cm,十分显著。它在25°C时还表现出1.23×10 S cm的超高σ。此外,全固态LiFePO|PVH-IM|Li全电池表现出出色的倍率性能和循环稳定性(在0.5C下280次循环后容量保持率为80.0%),展示了在实际ASLMBs中的巨大潜力。