Jiang Rui, Feng Qingzhou, Nong Daguan, Kang You Jung, Sept David, Hancock William O
Intercollege Program in Integrative and Biomedical Physiology, Pennsylvania State University, University Park, Pennsylvania; Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania.
Molecular Cellular and Integrative Biomedical Sciences Program, Pennsylvania State University, University Park, Pennsylvania.
Biophys J. 2025 Jun 17;124(12):2033-2040. doi: 10.1016/j.bpj.2025.04.033. Epub 2025 May 5.
Intracellular vesicles are typically transported by a small number of kinesin and dynein motors. However, the slow microtubule binding rate of kinesin-1 observed in in vitro biophysical studies suggests that long-range transport may require a high number of motors. To address the discrepancy in motor requirements between in vivo and in vitro studies, we reconstituted motility of 120-nm-diameter liposomes driven by multiple GFP-labeled kinesin-1 motors. Consistent with predictions based on previous binding rate measurements, we found that long-distance transport requires a high number of kinesin-1 motors. We hypothesized that this discrepancy from in vivo observations may arise from differences in motor organization and tested whether motor clustering can enhance transport efficiency using a DNA scaffold. Clustering just three motors increased liposome travel distances across a wide range of motor numbers. Our findings demonstrate that, independent of motor number, the arrangement of motors on a vesicle regulates transport distance, suggesting that differences in motor organization may explain the disparity between in vivo and in vitro motor requirements for long-range transport.
细胞内囊泡通常由少量驱动蛋白和动力蛋白驱动运输。然而,体外生物物理研究中观察到的驱动蛋白-1与微管的缓慢结合速率表明,长距离运输可能需要大量的驱动蛋白。为了解决体内和体外研究中驱动蛋白需求的差异,我们重建了由多个绿色荧光蛋白标记的驱动蛋白-1驱动的直径120纳米脂质体的运动。与基于先前结合速率测量的预测一致,我们发现长距离运输需要大量的驱动蛋白-1。我们推测,这种与体内观察结果的差异可能源于驱动蛋白组织的差异,并使用DNA支架测试了驱动蛋白聚集是否能提高运输效率。仅将三个驱动蛋白聚集在一起,就能在广泛的驱动蛋白数量范围内增加脂质体的移动距离。我们的研究结果表明,与驱动蛋白数量无关,囊泡上驱动蛋白的排列调节运输距离,这表明驱动蛋白组织的差异可能解释了体内和体外长距离运输对驱动蛋白需求的差异。