Suppr超能文献

基于术前磁共振成像和机器学习模型的颅内胶质母细胞瘤、原发性中枢神经系统淋巴瘤和脑转移瘤无创鉴别诊断模型的开发与验证:一项回顾性分析

Development and validation of a preoperative magnetic resonance imaging-based and machine learning model for the noninvasive differentiation of intracranial glioblastoma, primary central nervous system lymphoma and brain metastases: a retrospective analysis.

作者信息

Sun Yuxiang, Xu Junpeng, Kong Dongsheng, Zhang Yu, Wu Qijia, Wei Liqin, Zhu Zihao, Li Chunhui, Feng Shiyu

机构信息

Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.

Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.

出版信息

Front Oncol. 2025 Apr 22;15:1541350. doi: 10.3389/fonc.2025.1541350. eCollection 2025.

Abstract

BACKGROUND

Accurate preoperative identification of intracranial glioblastoma (GB), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) is crucial for determining the appropriate treatment strategy.

PURPOSE

We aimed to develop and validate the utility of preoperative magnetic resonance imaging-based radiomics and machine learning models for the noninvasive identification them. STUDY TYPE: Retrospective. POPULATION: We included 202 patients, including 71 GB, 59 PCNSL, and 72 BM, randomly divided into a training cohort (n =141) and a validation cohort (n = 61).FIELD STRENGTH/SEQUENCE: Axial T2-weighted fast spin-echo sequence (T2WI) and contrast-enhanced T1-weighted spin-echo sequence (CE-T1WI) using 1.5-T and 3.0-T scanners. ASSESSMENT: We extracted radiomics features from the T2 sequence and CE-T1 sequence separately. Then, we applied the F-test and recursive feature elimination (RFE) to reduce the dimensionality for both individual sequences and the combined sequence CE-T1 combined with T2.The support vector machine (SVM), k-nearest neighbor (KNN), and naive Bayes classifier (NBC) were used in model development. STATISTICAL TESTS: Chi-square test, one-way analysis of variance, and Kruskal-Wallis test were performed. The P values <0.05 were considered statistically significant. Performance was evaluated using AUC, sensitivity, specificity, and accuracy metrics.

RESULT

The SVM model exhibited superior diagnostic performance with macro-average AUC values of 0.91 for CE-T1 alone, 0.86 for T2 alone, and 0.93 for combined CE-T1 and T2 sequences. And the combined sequence model demonstrated the best overall accuracy, sensitivity, and F1 score, with an accuracy of 0.77, outperforming both KNN and NBC models.

CONCLUSION

The SVM-based MRI radiomics model effectively distinguishes between GB, PCNSL, and BM. Combining CE-T1 and T2 sequences significantly enhances classification performance, providing a robust, noninvasive diagnostic tool that could assist in treatment planning and improve patient outcomes.

摘要

背景

术前准确识别颅内胶质母细胞瘤(GB)、原发性中枢神经系统淋巴瘤(PCNSL)和脑转移瘤(BM)对于确定合适的治疗策略至关重要。

目的

我们旨在开发并验证基于术前磁共振成像的放射组学和机器学习模型用于无创识别它们的效用。

研究类型

回顾性研究。

研究对象

我们纳入了202例患者,包括71例GB、59例PCNSL和72例BM,随机分为训练队列(n = 141)和验证队列(n = 61)。

场强/序列:使用1.5-T和3.0-T扫描仪的轴向T2加权快速自旋回波序列(T2WI)和对比增强T1加权自旋回波序列(CE-T1WI)。

评估

我们分别从T2序列和CE-T1序列中提取放射组学特征。然后,我们应用F检验和递归特征消除(RFE)来降低单个序列以及CE-T1与T2组合序列的维度。在模型开发中使用了支持向量机(SVM)、k近邻(KNN)和朴素贝叶斯分类器(NBC)。

统计检验

进行卡方检验、单因素方差分析和Kruskal-Wallis检验。P值<0.05被认为具有统计学意义。使用AUC、敏感性、特异性和准确性指标评估性能。

结果

SVM模型表现出卓越的诊断性能,单独CE-T1的宏平均AUC值为0.91,单独T2的为0.86,CE-T1与T2组合序列的为0.93。并且组合序列模型表现出最佳的总体准确性、敏感性和F1分数,准确率为0.77,优于KNN和NBC模型。

结论

基于SVM的MRI放射组学模型能有效区分GB、PCNSL和BM。结合CE-T1和T2序列可显著提高分类性能,提供一种强大的无创诊断工具,有助于治疗规划并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ec/12052887/14fae9c9cecc/fonc-15-1541350-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验