Suppr超能文献

全固态锂金属电池中卤化物电解质的层间设计

Interlayer Design for Halide Electrolytes in All-Solid-State Lithium Metal Batteries.

作者信息

Wang Zeyi, Wang Tengrui, Zhang Nan, Zhang Weiran, Liu Yijie, Wang Chunsheng

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA.

出版信息

Adv Mater. 2025 Jul;37(30):e2501838. doi: 10.1002/adma.202501838. Epub 2025 May 7.

Abstract

All-solid-state lithium-metal batteries (ASSLMBs) are promising for transportation electrification due to their superior safety and high energy density. Lithium halide electrolytes provide excellent processing flexibility, high ionic conductivity, and anodic stability (>4.1 V), making them highly compatible with high-voltage cathodes, surpassing sulfide electrolytes (<2.1 V). Nevertheless, halide electrolytes suffer from low cathodic stability and form an electronically conductive interphase with lithium, resulting in a critical current density (CCD) of nearly zero. Herein, LiYbCl electrolytes are synthesized that are kinetically stable with lithium by forming an electronic insulating solid electrolyte interphase. Guided by critical overpotential criteria, a PI interlayer is designed that transforms into LiPI upon contact with lithium, substantially reducing the interfacial resistance of LiYbCl against lithium to 34 Ω and achieving a high critical overpotential of 114 mV. By substituting Yb with Lu, LiLuCl electrolytes with LiPI interlayers reach a CCD of 1.0 mA cm at a capacity of 1.0 mAh cm, comparable to sulfide electrolytes but with higher oxidation stability. Additionally, LiPI enables stable cycling of Li//Li cells with LiLuCl electrolytes at 0.5 mA cm for 400 cycles and maintains 86.5% capacity in Li//LiCoO cells after 220 cycles at 30 °C, paving the way for high-performance ASSLMBs.

摘要

全固态锂金属电池(ASSLMBs)因其卓越的安全性和高能量密度,在交通电气化领域颇具前景。卤化锂电解质具有出色的加工灵活性、高离子导电性和阳极稳定性(>4.1 V),使其与高压阴极具有高度兼容性,优于硫化物电解质(<2.1 V)。然而,卤化物电解质的阴极稳定性较低,会与锂形成电子导电界面,导致临界电流密度(CCD)几乎为零。在此,合成了LiYbCl电解质,通过形成电子绝缘的固体电解质界面,使其与锂在动力学上稳定。以临界过电位标准为指导,设计了一种PI中间层,该中间层在与锂接触时转变为LiPI,将LiYbCl与锂的界面电阻大幅降低至34 Ω,并实现了114 mV的高临界过电位。通过用Lu替代Yb,带有LiPI中间层的LiLuCl电解质在容量为1.0 mAh cm时的临界电流密度达到1.0 mA cm,与硫化物电解质相当,但具有更高的氧化稳定性。此外,LiPI能使Li//Li电池与LiLuCl电解质在0.5 mA cm下稳定循环400次,并在30°C下220次循环后,Li//LiCoO电池中保持86.5%的容量,为高性能全固态锂金属电池铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7718/12306406/06e01d31a023/ADMA-37-2501838-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验