Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
Department of Applied Chemistry, University of Science and Technology of China, Hefei, China.
Nature. 2023 Apr;616(7955):77-83. doi: 10.1038/s41586-023-05899-8. Epub 2023 Apr 5.
Inorganic superionic conductors possess high ionic conductivity and excellent thermal stability but their poor interfacial compatibility with lithium metal electrodes precludes application in all-solid-state lithium metal batteries. Here we report a LaCl-based lithium superionic conductor possessing excellent interfacial compatibility with lithium metal electrodes. In contrast to a LiMCl (M = Y, In, Sc and Ho) electrolyte lattice, the UCl-type LaCl lattice has large, one-dimensional channels for rapid Li conduction, interconnected by La vacancies via Ta doping and resulting in a three-dimensional Li migration network. The optimized LiTaLaCl electrolyte exhibits Li conductivity of 3.02 mS cm at 30 °C and a low activation energy of 0.197 eV. It also generates a gradient interfacial passivation layer to stabilize the Li metal electrode for long-term cycling of a Li-Li symmetric cell (1 mAh cm) for more than 5,000 h. When directly coupled with an uncoated LiNiCoMnO cathode and bare Li metal anode, the LiTaLaCl electrolyte enables a solid battery to run for more than 100 cycles with a cutoff voltage of 4.35 V and areal capacity of more than 1 mAh cm. We also demonstrate rapid Li conduction in lanthanide metal chlorides (LnCl; Ln = La, Ce, Nd, Sm and Gd), suggesting that the LnCl solid electrolyte system could provide further developments in conductivity and utility.
无机超离子导体具有高离子电导率和优异的热稳定性,但它们与锂金属电极的界面相容性较差,限制了它们在全固态锂金属电池中的应用。在这里,我们报告了一种基于 LaCl 的锂离子超导体,它与锂金属电极具有优异的界面相容性。与 LiMCl(M=Y、In、Sc 和 Ho)电解质晶格相比,UCl 型 LaCl 晶格具有用于快速 Li 传导的大、一维通道,通过 Ta 掺杂连接 La 空位,从而形成三维 Li 迁移网络。优化后的 LiTaLaCl 电解质在 30°C 时的 Li 电导率为 3.02 mS cm,激活能低至 0.197 eV。它还生成了梯度界面钝化层,以稳定锂金属电极,使 Li-Li 对称电池(1 mAh cm)能够在 5000 小时以上的时间内进行长期循环。当与未涂覆的 LiNiCoMnO 正极和裸露的锂金属负极直接耦合时,LiTaLaCl 电解质使固态电池能够运行超过 100 个循环,截止电压为 4.35 V,面容量超过 1 mAh cm。我们还证明了镧系金属氯化物(LnCl;Ln=La、Ce、Nd、Sm 和 Gd)中的 Li 快速传导,表明 LnCl 固体电解质体系在电导率和实用性方面具有进一步的发展潜力。