Suppr超能文献

使用创新的多层深度神经网络模型推进低剂量CT图像中的脑肿瘤检测与分类

Advancing brain tumor detection and classification in Low-Dose CT images using the innovative multi-layered deep neural network model.

作者信息

Balakrishna Katari, Rao A Nagaraja

机构信息

Research Scholar, School of Computer Science and Engineering, VIT, Vellore, Tamil Nadu, India.

Associate Professor, School of Computer Science and Engineering, VIT, Vellore, Tamil Nadu, India.

出版信息

Technol Health Care. 2025 May;33(3):1199-1220. doi: 10.1177/09287329241302558. Epub 2024 Dec 29.

Abstract

BackgroundEffective brain tumour therapy and better patient outcomes depend on early tumour diagnosis. Accurate diagnosis can be hampered by traditional imaging techniques' frequent struggles with low resolution and noise, especially in Low Dose CT scans. Through the integration of deep learning methods and sophisticated image processing techniques, this study seeks to establish a novel framework, the Multi Layered Chroma Edge Deep Net (MLCED-Net), to improve the accuracy of brain tumour diagnosis in Low Dose CT images.MethodsUsing the Lucy-Richardson technique for picture deblurring, Adaptive Histogram Equalisation, and pixel normalization to lower noise and enhance image quality are some of the pre-processing stages that are part of the suggested strategy. Main characteristics from the processed pictures are then retrieved, including mean, energy, contrast, and entropy. Following the feeding of these characteristics, the MLCED-Net model is used for classification and segmentation tasks. It utilises a 15-layer deep learning architecture.ResultsThe MLCED-Net model outperformed previous techniques by achieving an amazing accuracy rate of 98.9% in the detection of brain tumours. The suggested procedures were effective, as seen by the significant increases in image quality that the Peak Signal-to-Noise Ratio (PSNR) values showed after post-processing. A reliable method for brain tumour diagnosis in low-dose CT scans is offered by the MLCED-Net framework's combination of multi-layered autoencoders, color-based operations, and edge detection techniques. The present work underscores the capacity of sophisticated deep learning models to augment diagnostic precision, hence augmenting patient care and results.

摘要

背景

有效的脑肿瘤治疗和更好的患者预后取决于早期肿瘤诊断。传统成像技术常常难以应对低分辨率和噪声问题,这会阻碍准确诊断,尤其是在低剂量CT扫描中。通过整合深度学习方法和先进的图像处理技术,本研究旨在建立一个新颖的框架——多层色度边缘深度网络(MLCED-Net),以提高低剂量CT图像中脑肿瘤诊断的准确性。

方法

所建议的策略包括一些预处理阶段,如使用露西-理查森技术进行图像去模糊、自适应直方图均衡化和像素归一化,以降低噪声并提高图像质量。然后从处理后的图像中提取主要特征,包括均值、能量、对比度和熵。在输入这些特征后,MLCED-Net模型用于分类和分割任务。它采用了一个15层的深度学习架构。

结果

MLCED-Net模型在脑肿瘤检测中达到了惊人的98.9%的准确率,优于先前的技术。峰值信噪比(PSNR)值显示,后处理后图像质量显著提高,这表明所建议的程序是有效的。MLCED-Net框架将多层自动编码器、基于颜色的操作和边缘检测技术相结合,为低剂量CT扫描中的脑肿瘤诊断提供了一种可靠的方法。目前的工作强调了先进的深度学习模型提高诊断精度的能力,从而改善患者护理和预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验