Zhang Shihan, Wang Xiaoqi, Li Fei, Peng Shaoliang
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.
School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China.
Int J Mol Sci. 2025 Apr 16;26(8):3761. doi: 10.3390/ijms26083761.
Novel drug discovery and repositioning remain critical challenges in biomedical research, requiring accurate prediction of drug-target interactions (DTIs). We propose the CPDP framework, which builds upon existing biomedical representation models and integrates contrastive learning with multi-dimensional representations of proteins and drugs to predict DTIs. By aligning the representation space, CPDP enables GNN-based methods to achieve zero-shot learning capabilities, allowing for accurate predictions of unseen drug data. This approach enhances DTI prediction performance, particularly for novel drugs not included in the BioHNs dataset. Experimental results demonstrate CPDP's high accuracy and strong generalization ability in predicting novel biological entities while maintaining effectiveness for traditional drug repositioning tasks.
新型药物发现和重新定位仍然是生物医学研究中的关键挑战,需要准确预测药物-靶点相互作用(DTIs)。我们提出了CPDP框架,该框架基于现有的生物医学表示模型构建,并将对比学习与蛋白质和药物的多维表示相结合来预测DTIs。通过对齐表示空间,CPDP使基于图神经网络(GNN)的方法能够实现零样本学习能力,从而能够准确预测未见的药物数据。这种方法提高了DTI预测性能,特别是对于未包含在BioHNs数据集中的新型药物。实验结果表明,CPDP在预测新型生物实体方面具有很高的准确性和强大的泛化能力,同时对传统药物重新定位任务也保持有效性。