Suppr超能文献

CPDP:用于新药发现的对比蛋白质-药物预训练

CPDP: Contrastive Protein-Drug Pre-Training for Novel Drug Discovery.

作者信息

Zhang Shihan, Wang Xiaoqi, Li Fei, Peng Shaoliang

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Int J Mol Sci. 2025 Apr 16;26(8):3761. doi: 10.3390/ijms26083761.

Abstract

Novel drug discovery and repositioning remain critical challenges in biomedical research, requiring accurate prediction of drug-target interactions (DTIs). We propose the CPDP framework, which builds upon existing biomedical representation models and integrates contrastive learning with multi-dimensional representations of proteins and drugs to predict DTIs. By aligning the representation space, CPDP enables GNN-based methods to achieve zero-shot learning capabilities, allowing for accurate predictions of unseen drug data. This approach enhances DTI prediction performance, particularly for novel drugs not included in the BioHNs dataset. Experimental results demonstrate CPDP's high accuracy and strong generalization ability in predicting novel biological entities while maintaining effectiveness for traditional drug repositioning tasks.

摘要

新型药物发现和重新定位仍然是生物医学研究中的关键挑战,需要准确预测药物-靶点相互作用(DTIs)。我们提出了CPDP框架,该框架基于现有的生物医学表示模型构建,并将对比学习与蛋白质和药物的多维表示相结合来预测DTIs。通过对齐表示空间,CPDP使基于图神经网络(GNN)的方法能够实现零样本学习能力,从而能够准确预测未见的药物数据。这种方法提高了DTI预测性能,特别是对于未包含在BioHNs数据集中的新型药物。实验结果表明,CPDP在预测新型生物实体方面具有很高的准确性和强大的泛化能力,同时对传统药物重新定位任务也保持有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d269/12028240/33c85f9254f1/ijms-26-03761-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验